論文の概要: Video Summarization: Study of various techniques
- arxiv url: http://arxiv.org/abs/2101.08434v1
- Date: Thu, 21 Jan 2021 04:45:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-21 07:56:43.819241
- Title: Video Summarization: Study of various techniques
- Title(参考訳): ビデオ要約:様々な技法の研究
- Authors: Ravi Raj, Varad Bhatnagar, Aman Kumar Singh, Sneha Mane and Nilima
Walde
- Abstract要約: いずれのアプローチでも、長いビデオは短いビデオに変換され、オリジナルのビデオにあるすべての重要なイベントをキャプチャすることを目的としている。
「重要イベント」の定義は、スポーツ映像やドキュメンタリーなど、重要と分類される異なるイベントがある場合など、文脈によって異なる場合がある。
- 参考スコア(独自算出の注目度): 0.4083182125683813
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A comparative study of various techniques which can be used for summarization
of Videos i.e. Video to Video conversion is presented along with respective
architecture, results, strengths and shortcomings. In all approaches, a lengthy
video is converted into a shorter video which aims to capture all important
events that are present in the original video. The definition of 'important
event' may vary according to the context, such as a sports video and a
documentary may have different events which are classified as important.
- Abstract(参考訳): 映像の要約に使用できる様々な技術の比較研究
ビデオからビデオへの変換は、それぞれのアーキテクチャ、結果、強み、欠点とともに提供される。
いずれのアプローチでも、長いビデオは短いビデオに変換され、オリジナルのビデオにあるすべての重要なイベントをキャプチャすることを目的としている。
「重要イベント」の定義は、スポーツ映像やドキュメンタリーなど、重要と分類される異なるイベントがある場合など、文脈によって異なる場合がある。
関連論文リスト
- Towards Long Video Understanding via Fine-detailed Video Story Generation [58.31050916006673]
長いビデオ理解はコンピュータビジョンにおいて重要な課題となり、監視からコンテンツ検索まで多くのアプリケーションで進歩を遂げている。
既存のビデオ理解手法は、複雑な長期コンテキスト関係モデリングと冗長性からの干渉という、長いビデオ理解を扱う際の2つの課題に悩まされる。
長い動画を詳細なテキスト表現に変換するFDVS(Fin-Detailed Video Story Generation)を紹介した。
論文 参考訳(メタデータ) (2024-12-09T03:41:28Z) - EA-VTR: Event-Aware Video-Text Retrieval [97.30850809266725]
Event-Aware Video-Text Retrievalモデルは、優れたビデオイベント認識を通じて、強力なビデオテキスト検索能力を実現する。
EA-VTRはフレームレベルとビデオレベルの視覚表現を同時にエンコードすることができ、詳細なイベント内容と複雑なイベントの時間的相互アライメントを可能にする。
論文 参考訳(メタデータ) (2024-07-10T09:09:58Z) - Detours for Navigating Instructional Videos [58.1645668396789]
We propose VidDetours, a video-lang approach that learn to retrieve the target temporal segments from a large repository of how-to's。
本稿では,ビデオ検索と質問応答の最良の方法に比べて,モデルが大幅に改善し,リコール率が35%を超えることを示す。
論文 参考訳(メタデータ) (2024-01-03T16:38:56Z) - Beyond the Frame: Single and mutilple video summarization method with
user-defined length [4.424739166856966]
ビデオの要約は難しいが重要な作業であり、さらなる研究と開発にかなりの可能性がある。
本稿では,NLP技術とビデオ処理技術を組み合わせて,長い動画を比較的短いビデオに変換する。
論文 参考訳(メタデータ) (2023-12-23T04:32:07Z) - Shot2Story: A New Benchmark for Comprehensive Understanding of Multi-shot Videos [58.53311308617818]
マルチショットビデオ理解ベンチマークShot2Storyには、詳細なショットレベルのキャプション、包括的なビデオ要約、質問応答ペアがある。
予備実験では、マルチショットビデオの長大かつ包括的な要約を生成するための課題がいくつか示されている。
生成された不完全な要約は、既存のビデオ理解タスクにおいて、すでに競合的なパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2023-12-16T03:17:30Z) - Just a Glimpse: Rethinking Temporal Information for Video Continual
Learning [58.7097258722291]
個別フレームと単一フレームに基づく効果的なビデオ連続学習のための新しい再生機構を提案する。
極端な記憶の制約の下では、ビデオの多様性は時間的情報よりも重要な役割を果たす。
提案手法は最先端性能を実現し,従来の最先端性能を最大21.49%向上させる。
論文 参考訳(メタデータ) (2023-05-28T19:14:25Z) - A Multi-stage deep architecture for summary generation of soccer videos [11.41978608521222]
本稿では,音声メタデータとイベントメタデータの両方を利用して,サッカーの試合の要約を生成する手法を提案する。
その結果,提案手法は一致の動作を検出し,どの動作が要約に属するべきかを識別し,複数の候補要約を提案する。
論文 参考訳(メタデータ) (2022-05-02T07:26:35Z) - A Survey on Deep Learning Technique for Video Segmentation [147.0767454918527]
ビデオセグメンテーションは幅広い応用において重要な役割を果たしている。
ディープラーニングベースのアプローチは、ビデオセグメンテーションに特化しており、魅力的なパフォーマンスを提供している。
論文 参考訳(メタデータ) (2021-07-02T15:51:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。