論文の概要: Out-of-Distribution Generalization Analysis via Influence Function
- arxiv url: http://arxiv.org/abs/2101.08521v1
- Date: Thu, 21 Jan 2021 09:59:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-21 17:26:15.074258
- Title: Out-of-Distribution Generalization Analysis via Influence Function
- Title(参考訳): 影響関数による分布の一般化解析
- Authors: Haotian Ye, Chuanlong Xie, Yue Liu, Zhenguo Li
- Abstract要約: トレーニングとターゲットデータのミスマッチは、機械学習システムにとって大きな課題のひとつだ。
我々は,OOD一般化問題に,ロバスト統計学の古典的ツールであるインフルエンス関数を導入する。
実験領域と提案指標の精度は,OODアルゴリズムが必要かどうか,モデルが優れたOOD一般化を実現するかどうかを判別する上で有効であることを示す。
- 参考スコア(独自算出の注目度): 25.80365416547478
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The mismatch between training and target data is one major challenge for
current machine learning systems. When training data is collected from multiple
domains and the target domains include all training domains and other new
domains, we are facing an Out-of-Distribution (OOD) generalization problem that
aims to find a model with the best OOD accuracy. One of the definitions of OOD
accuracy is worst-domain accuracy. In general, the set of target domains is
unknown, and the worst over target domains may be unseen when the number of
observed domains is limited. In this paper, we show that the worst accuracy
over the observed domains may dramatically fail to identify the OOD accuracy.
To this end, we introduce Influence Function, a classical tool from robust
statistics, into the OOD generalization problem and suggest the variance of
influence function to monitor the stability of a model on training domains. We
show that the accuracy on test domains and the proposed index together can help
us discern whether OOD algorithms are needed and whether a model achieves good
OOD generalization.
- Abstract(参考訳): トレーニングとターゲットデータのミスマッチは、現在の機械学習システムにとって大きな課題のひとつだ。
複数のドメインからトレーニングデータを収集し、対象ドメインがすべてのトレーニングドメインや他の新しいドメインを含む場合、最適なOOD精度のモデルを見つけることを目的とした、アウト・オブ・ディストリビューション(OOD)一般化問題に直面している。
OODの精度の定義の1つは、最悪の領域の精度である。
一般に、対象ドメインの集合は未知であり、観測されたドメインの数が限られている場合、対象ドメインに対する最悪の状態は見つからない可能性がある。
本稿では,観測領域における最悪の精度は,OODの精度を劇的に識別できない可能性があることを示す。
そこで本研究では,ロバスト統計学の古典的ツールであるインフルエント関数をood一般化問題に導入し,モデルの安定性を監視するためにインフルエント関数の分散を提案する。
実験領域と提案指標の精度は,OODアルゴリズムが必要かどうか,モデルが優れたOOD一般化を実現するかどうかを判別する上で有効であることを示す。
関連論文リスト
- MADOD: Generalizing OOD Detection to Unseen Domains via G-Invariance Meta-Learning [10.38552112657656]
本稿では,メタ学習型Across Domain Out-of-Distribution Detection (MADOD)を紹介した。
タスク構築において重要な革新は、各メタ学習タスク内で、分散クラスを擬似OODとしてランダムに指定することである。
実世界のデータセットと合成データセットの実験により、MADODは目に見えない領域を横断するセマンティックOOD検出において優れた性能を示した。
論文 参考訳(メタデータ) (2024-11-02T17:46:23Z) - Domain penalisation for improved Out-of-Distribution Generalisation [1.979158763744267]
ドメインの一般化(DG)は、多種多様な未確認のターゲットドメインにおける堅牢なパフォーマンスを保証することを目的としている。
本稿では、複数のソースドメインからデータをサンプリングすると仮定した、オブジェクト検出のタスクのためのフレームワークを提案する。
より多くの注意を必要とするドメインを優先することで、私たちのアプローチはトレーニングプロセスのバランスを効果的に保ちます。
論文 参考訳(メタデータ) (2024-08-03T11:06:47Z) - Consistency-Guided Temperature Scaling Using Style and Content
Information for Out-of-Domain Calibration [24.89907794192497]
領域外キャリブレーション性能を向上させるために,整合性誘導温度スケーリング(CTS)を提案する。
私たちは、複数のドメイン設定でデータサンプルを適切に表現できる重要なコンポーネントであるスタイルとコンテントという2つの異なる側面を考慮に入れています。
これは、精度を損なうことなくソースドメインのみを使用することで実現でき、我々のスキームは様々な信頼できるAIシステムに直接適用できる。
論文 参考訳(メタデータ) (2024-02-22T23:36:18Z) - Towards Calibrated Robust Fine-Tuning of Vision-Language Models [97.19901765814431]
本研究は、視覚言語モデルにおいて、OOD精度と信頼性校正の両方を同時に改善する頑健な微調整法を提案する。
OOD分類とOOD校正誤差は2つのIDデータからなる共有上限を持つことを示す。
この知見に基づいて,最小の特異値を持つ制約付きマルチモーダルコントラスト損失を用いて微調整を行う新しいフレームワークを設計する。
論文 参考訳(メタデータ) (2023-11-03T05:41:25Z) - Is Fine-tuning Needed? Pre-trained Language Models Are Near Perfect for
Out-of-Domain Detection [28.810524375810736]
アウト・オブ・ディストリビューション(OOD)検出は、テキスト上の信頼できる予測にとって重要なタスクである。
事前訓練された言語モデルによる微調整は、OOD検出器を導出するための事実上の手順である。
距離に基づく検出手法を用いて、事前学習した言語モデルは、分布シフトがドメイン変更を伴う場合、ほぼ完璧なOOD検出器であることを示す。
論文 参考訳(メタデータ) (2023-05-22T17:42:44Z) - Out-of-Domain Robustness via Targeted Augmentations [90.94290420322457]
領域外一般化のためのデータ拡張設計の原理を考察する。
線形設定に関する理論的解析により動機付けを行い,対象拡大を提案する。
その結果,OOD性能は3.2~15.2ポイント向上した。
論文 参考訳(メタデータ) (2023-02-23T08:59:56Z) - Generalizability of Adversarial Robustness Under Distribution Shifts [57.767152566761304]
本研究は, 実証的, 証明された敵対的堅牢性間の相互作用と, ドメインの一般化を両立させるための第一歩を踏み出した。
複数のドメインでロバストモデルをトレーニングし、その正確性とロバスト性を評価する。
本研究は, 現実の医療応用をカバーするために拡張され, 敵の増大は, クリーンデータ精度に最小限の影響を伴って, 強靭性の一般化を著しく促進する。
論文 参考訳(メタデータ) (2022-09-29T18:25:48Z) - Deep Unsupervised Domain Adaptation: A Review of Recent Advances and
Perspectives [16.68091981866261]
対象領域のデータの性能低下に対応するために、教師なし領域適応(UDA)を提案する。
UDAは、自然言語処理、ビデオ解析、自然言語処理、時系列データ分析、医用画像解析など、有望な成果を上げている。
論文 参考訳(メタデータ) (2022-08-15T20:05:07Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Self-balanced Learning For Domain Generalization [64.99791119112503]
ドメインの一般化は、モデルが未知の統計を持つ対象のドメインに一般化できるように、マルチドメインのソースデータの予測モデルを学ぶことを目的としている。
既存のアプローチのほとんどは、ソースデータがドメインとクラスの両方の観点からバランスよく調整されているという前提の下で開発されている。
本稿では,多領域ソースデータの分布の違いによるバイアスを軽減するために,損失の重み付けを適応的に学習する自己均衡型領域一般化フレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-31T03:17:54Z) - Adaptive Risk Minimization: Learning to Adapt to Domain Shift [109.87561509436016]
ほとんどの機械学習アルゴリズムの基本的な前提は、トレーニングとテストデータは、同じ基礎となる分布から引き出されることである。
本研究では,学習データをドメインに構造化し,複数のテスト時間シフトが存在する場合の領域一般化の問題点について考察する。
本稿では、適応リスク最小化(ARM)の枠組みを紹介し、モデルがトレーニング領域に適応することを学ぶことで、効果的な適応のために直接最適化される。
論文 参考訳(メタデータ) (2020-07-06T17:59:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。