A Two-Stage Deep Learning Detection Classifier for the ATLAS Asteroid
Survey
- URL: http://arxiv.org/abs/2101.08912v1
- Date: Fri, 22 Jan 2021 01:35:08 GMT
- Title: A Two-Stage Deep Learning Detection Classifier for the ATLAS Asteroid
Survey
- Authors: Amandin Chyba Rabeendran and Larry Denneau
- Abstract summary: We present a two-step neural network model to separate detections of solar system objects from optical and electronic artifacts.
We show that the model reaches 99.6% accuracy on real asteroids in ATLAS data with a 0.4% false negative rate.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we present a two-step neural network model to separate
detections of solar system objects from optical and electronic artifacts in
data obtained with the "Asteroid Terrestrial-impact Last Alert System" (ATLAS),
a near-Earth asteroid sky survey system [arXiv:1802.00879]. A convolutional
neural network [arXiv:1807.10912] is used to classify small "postage-stamp"
images of candidate detections of astronomical sources into eight classes,
followed by a multi-layered perceptron that provides a probability that a
temporal sequence of four candidate detections represents a real astronomical
source. The goal of this work is to reduce the time delay between Near-Earth
Object (NEO) detections and submission to the Minor Planet Center. Due to the
rare and hazardous nature of NEOs [Harris and D'Abramo, 2015], a low false
negative rate is a priority for the model. We show that the model reaches
99.6\% accuracy on real asteroids in ATLAS data with a 0.4\% false negative
rate. Deployment of this model on ATLAS has reduced the amount of NEO
candidates that astronomers must screen by 90%, thereby bringing ATLAS one step
closer to full autonomy.
Related papers
- Effective and Efficient Adversarial Detection for Vision-Language Models via A Single Vector [97.92369017531038]
We build a new laRge-scale Adervsarial images dataset with Diverse hArmful Responses (RADAR)
We then develop a novel iN-time Embedding-based AdveRSarial Image DEtection (NEARSIDE) method, which exploits a single vector that distilled from the hidden states of Visual Language Models (VLMs) to achieve the detection of adversarial images against benign ones in the input.
arXiv Detail & Related papers (2024-10-30T10:33:10Z) - Hazardous Asteroids Classification [0.30977113730786693]
The aim of this project is to use machine learning and deep learning to accurately classify hazardous asteroids.
A total of ten methods which consist of five machine learning algorithms and five deep learning models are trained and evaluated to find the suitable model that solves the issue.
arXiv Detail & Related papers (2024-09-03T10:37:24Z) - Deep-learning based measurement of planetary radial velocities in the
presence of stellar variability [70.4007464488724]
We use neural networks to reduce stellar RV jitter in three years of HARPS-N sun-as-a-star spectra.
We find that the multi-line CNN is able to recover planets with 0.2 m/s semi-amplitude, 50 day period, with 8.8% error in the amplitude and 0.7% in the period.
arXiv Detail & Related papers (2023-04-10T18:33:36Z) - When Spectral Modeling Meets Convolutional Networks: A Method for
Discovering Reionization-era Lensed Quasars in Multi-band Imaging Data [0.0]
We introduce a new spatial geometry veto criterion, implemented via image-based deep learning.
We make the first application of this approach in a systematic search for reionization-era lensed quasars.
The training datasets are constructed by painting deflected point-source lights over actual galaxy images to generate realistic galaxy-quasar lens models.
arXiv Detail & Related papers (2022-11-26T11:27:13Z) - Towards Asteroid Detection in Microlensing Surveys with Deep Learning [0.0]
Asteroids are an indelible part of most astronomical surveys though only a few surveys are dedicated to their detection.
This paper presents novel deep learning-based solutions for the recovery and discovery of asteroids in the microlensing data gathered by the MOA project.
arXiv Detail & Related papers (2022-11-04T03:16:23Z) - Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology
Classification and Anomaly Detection [57.85347204640585]
We develop a Universal Domain Adaptation method DeepAstroUDA.
It can be applied to datasets with different types of class overlap.
For the first time, we demonstrate the successful use of domain adaptation on two very different observational datasets.
arXiv Detail & Related papers (2022-11-01T18:07:21Z) - Discovering Faint and High Apparent Motion Rate Near-Earth Asteroids
Using A Deep Learning Program [0.5729426778193399]
We developed a convolutional neural network for detecting faint fast-moving near-Earth objects.
It was trained with artificial streaks generated from simulations and was able to find these asteroid streaks with an accuracy of 98.7%.
This approach can be adopted by any observatory for detecting fast-moving asteroid streaks.
arXiv Detail & Related papers (2022-08-19T00:16:09Z) - Optimization of Artificial Neural Networks models applied to the
identification of images of asteroids' resonant arguments [0.6449761153631166]
Recent works used Convolutional Neural Networks (CNN) models to perform such task automatically.
We compare the outcome of such models with those of some of the most advanced and publicly available CNN architectures, like the VGG, Inception and ResNet.
The VGG model, with and without regularizations, proved to be the most efficient method to predict labels of large datasets.
arXiv Detail & Related papers (2022-07-28T15:46:39Z) - SODA10M: Towards Large-Scale Object Detection Benchmark for Autonomous
Driving [94.11868795445798]
We release a Large-Scale Object Detection benchmark for Autonomous driving, named as SODA10M, containing 10 million unlabeled images and 20K images labeled with 6 representative object categories.
To improve diversity, the images are collected every ten seconds per frame within 32 different cities under different weather conditions, periods and location scenes.
We provide extensive experiments and deep analyses of existing supervised state-of-the-art detection models, popular self-supervised and semi-supervised approaches, and some insights about how to develop future models.
arXiv Detail & Related papers (2021-06-21T13:55:57Z) - DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts
using Deep Learning [70.80563014913676]
We investigate the use of convolutional neural networks (CNNs) for the problem of separating low-surface-brightness galaxies from artifacts in survey images.
We show that CNNs offer a very promising path in the quest to study the low-surface-brightness universe.
arXiv Detail & Related papers (2020-11-24T22:51:08Z) - DR-SPAAM: A Spatial-Attention and Auto-regressive Model for Person
Detection in 2D Range Data [81.06749792332641]
We propose a person detection network which uses an alternative strategy to combine scans obtained at different times.
DR-SPAAM keeps the intermediate features from the backbone network as a template and recurrently updates the template when a new scan becomes available.
On the DROW dataset, our method outperforms the existing state-of-the-art, while being approximately four times faster.
arXiv Detail & Related papers (2020-04-29T11:01:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.