STAR: A Benchmark for Astronomical Star Fields Super-Resolution
- URL: http://arxiv.org/abs/2507.16385v1
- Date: Tue, 22 Jul 2025 09:28:28 GMT
- Title: STAR: A Benchmark for Astronomical Star Fields Super-Resolution
- Authors: Kuo-Cheng Wu, Guohang Zhuang, Jinyang Huang, Xiang Zhang, Wanli Ouyang, Yan Lu,
- Abstract summary: We propose STAR, a large-scale astronomical SR dataset containing 54,738 flux-consistent star field image pairs.<n>We propose a Flux-Invariant Super Resolution (FISR) model that could accurately infer the flux-consistent high-resolution images from input photometry.
- Score: 51.79340280382437
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Super-resolution (SR) advances astronomical imaging by enabling cost-effective high-resolution capture, crucial for detecting faraway celestial objects and precise structural analysis. However, existing datasets for astronomical SR (ASR) exhibit three critical limitations: flux inconsistency, object-crop setting, and insufficient data diversity, significantly impeding ASR development. We propose STAR, a large-scale astronomical SR dataset containing 54,738 flux-consistent star field image pairs covering wide celestial regions. These pairs combine Hubble Space Telescope high-resolution observations with physically faithful low-resolution counterparts generated through a flux-preserving data generation pipeline, enabling systematic development of field-level ASR models. To further empower the ASR community, STAR provides a novel Flux Error (FE) to evaluate SR models in physical view. Leveraging this benchmark, we propose a Flux-Invariant Super Resolution (FISR) model that could accurately infer the flux-consistent high-resolution images from input photometry, suppressing several SR state-of-the-art methods by 24.84% on a novel designed flux consistency metric, showing the priority of our method for astrophysics. Extensive experiments demonstrate the effectiveness of our proposed method and the value of our dataset. Code and models are available at https://github.com/GuoCheng12/STAR.
Related papers
- Latent-space Field Tension for Astrophysical Component Detection An application to X-ray imaging [0.0]
We introduce a novel multi-frequency Bayesian model of the sky emission field that leverages latent-space tension as an indicator of model misspecification.<n>We demonstrate the effectiveness of this method on synthetic multi-frequency imaging data and apply it to observational X-ray data from the eROSITA Early Data Release (EDR) of the SN1987A region in the Large Magellanic Cloud (LMC)<n>Our results highlight the method's capability to reconstruct astrophysical components with high accuracy, achieving sub-pixel localization of point sources, robust separation of extended emission, and detailed uncertainty quantification.
arXiv Detail & Related papers (2025-06-25T18:45:18Z) - A New Statistical Model of Star Speckles for Learning to Detect and Characterize Exoplanets in Direct Imaging Observations [37.845442465099396]
This paper presents a novel statistical model that captures nuisance fluctuations using a multi-scale approach.<n>It integrates into an interpretable, end-to-end learnable framework for simultaneous exoplanet detection and flux estimation.<n>The proposed approach is computationally efficient, robust to varying data quality, and well suited for large-scale observational surveys.
arXiv Detail & Related papers (2025-03-21T13:07:55Z) - Bayesian Deconvolution of Astronomical Images with Diffusion Models: Quantifying Prior-Driven Features in Reconstructions [40.13294159814764]
Deconvolution of astronomical images is a key aspect of recovering the intrinsic properties of celestial objects.<n>This paper explores the use of diffusion models (DMs) and the Diffusion Posterior Sampling (DPS) algorithm to solve this inverse problem task.
arXiv Detail & Related papers (2024-11-28T14:00:00Z) - Semantic Guided Large Scale Factor Remote Sensing Image Super-resolution with Generative Diffusion Prior [13.148815217684277]
Large scale factor super-resolution (SR) algorithms are vital for maximizing the utilization of low-resolution (LR) satellite data captured from orbit.
Existing methods confront challenges in recovering SR images with clear textures and correct ground objects.
We introduce a novel framework, the Semantic Guided Diffusion Model (SGDM), designed for large scale factor remote sensing image super-resolution.
arXiv Detail & Related papers (2024-05-11T16:06:16Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z) - Light Field Spatial Super-resolution via Deep Combinatorial Geometry
Embedding and Structural Consistency Regularization [99.96632216070718]
Light field (LF) images acquired by hand-held devices usually suffer from low spatial resolution.
The high-dimensional spatiality characteristic and complex geometrical structure of LF images make the problem more challenging than traditional single-image SR.
We propose a novel learning-based LF framework, in which each view of an LF image is first individually super-resolved.
arXiv Detail & Related papers (2020-04-05T14:39:57Z) - HighRes-net: Recursive Fusion for Multi-Frame Super-Resolution of
Satellite Imagery [55.253395881190436]
Multi-frame Super-Resolution (MFSR) offers a more grounded approach to the ill-posed problem.
This is important for satellite monitoring of human impact on the planet.
We present HighRes-net, the first deep learning approach to MFSR that learns its sub-tasks in an end-to-end fashion.
arXiv Detail & Related papers (2020-02-15T22:17:47Z) - Hyperspectral and multispectral image fusion under spectrally varying
spatial blurs -- Application to high dimensional infrared astronomical
imaging [11.243400478302767]
We propose a data fusion method which combines the benefits of each image to recover a high-spectral resolution data variant.
We conduct experiments on a realistic synthetic dataset of simulated observation of the upcoming James Webb Space Telescope.
arXiv Detail & Related papers (2019-12-26T13:58:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.