Snapshot Hyperspectral Imaging Based on Weighted High-order Singular
Value Regularization
- URL: http://arxiv.org/abs/2101.08923v1
- Date: Fri, 22 Jan 2021 02:54:55 GMT
- Title: Snapshot Hyperspectral Imaging Based on Weighted High-order Singular
Value Regularization
- Authors: Niankai Cheng, Hua Huang, Lei Zhang, and Lizhi Wang
- Abstract summary: Snapshot hyperspectral imaging can capture the 3D hyperspectral image (HSI) with a single 2D measurement.
Existing reconstruction methods cannot fully exploit the structurally spectral-spatial nature in 3D HSI.
We propose an effective high-order tensor optimization based method to boost the reconstruction fidelity for snapshot hyperspectral imaging.
- Score: 22.5033027930853
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Snapshot hyperspectral imaging can capture the 3D hyperspectral image (HSI)
with a single 2D measurement and has attracted increasing attention recently.
Recovering the underlying HSI from the compressive measurement is an ill-posed
problem and exploiting the image prior is essential for solving this ill-posed
problem. However, existing reconstruction methods always start from modeling
image prior with the 1D vector or 2D matrix and cannot fully exploit the
structurally spectral-spatial nature in 3D HSI, thus leading to a poor
fidelity. In this paper, we propose an effective high-order tensor optimization
based method to boost the reconstruction fidelity for snapshot hyperspectral
imaging. We first build high-order tensors by exploiting the spatial-spectral
correlation in HSI. Then, we propose a weight high-order singular value
regularization (WHOSVR) based low-rank tensor recovery model to characterize
the structure prior of HSI. By integrating the structure prior in WHOSVR with
the system imaging process, we develop an optimization framework for HSI
reconstruction, which is finally solved via the alternating minimization
algorithm. Extensive experiments implemented on two representative systems
demonstrate that our method outperforms state-of-the-art methods.
Related papers
- Efficient One-Step Diffusion Refinement for Snapshot Compressive Imaging [8.819370643243012]
Coded Aperture Snapshot Spectral Imaging (CASSI) is a crucial technique for capturing three-dimensional multispectral images (MSIs)
Current state-of-the-art methods, predominantly end-to-end, face limitations in reconstructing high-frequency details.
This paper introduces a novel one-step Diffusion Probabilistic Model within a self-supervised adaptation framework for Snapshot Compressive Imaging.
arXiv Detail & Related papers (2024-09-11T17:02:10Z) - Improving Robustness for Joint Optimization of Camera Poses and
Decomposed Low-Rank Tensorial Radiance Fields [26.4340697184666]
We propose an algorithm that allows joint refinement of camera pose and scene geometry represented by decomposed low-rank tensor.
We also propose techniques of smoothed 2D supervision, randomly scaled kernel parameters, and edge-guided loss mask.
arXiv Detail & Related papers (2024-02-20T18:59:02Z) - Latent Diffusion Prior Enhanced Deep Unfolding for Snapshot Spectral Compressive Imaging [17.511583657111792]
Snapshot spectral imaging reconstruction aims to reconstruct three-dimensional spatial-spectral images from a single-shot two-dimensional compressed measurement.
We introduce a generative model, namely the latent diffusion model (LDM), to generate degradation-free prior to deep unfolding method.
arXiv Detail & Related papers (2023-11-24T04:55:20Z) - HKNAS: Classification of Hyperspectral Imagery Based on Hyper Kernel
Neural Architecture Search [104.45426861115972]
We propose to directly generate structural parameters by utilizing the specifically designed hyper kernels.
We obtain three kinds of networks to separately conduct pixel-level or image-level classifications with 1-D or 3-D convolutions.
A series of experiments on six public datasets demonstrate that the proposed methods achieve state-of-the-art results.
arXiv Detail & Related papers (2023-04-23T17:27:40Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
This paper tackles the challenging problem of hyperspectral (HS) image denoising.
We propose rank-enhanced low-dimensional convolution set (Re-ConvSet)
We then incorporate Re-ConvSet into the widely-used U-Net architecture to construct an HS image denoising method.
arXiv Detail & Related papers (2022-07-09T13:35:12Z) - A Fast Alternating Minimization Algorithm for Coded Aperture Snapshot
Spectral Imaging Based on Sparsity and Deep Image Priors [8.890754092562918]
Coded aperture snapshot spectral imaging (CASSI) is a technique used to reconstruct three-dimensional hyperspectral images (HSIs)
This paper proposes a fast alternating minimization algorithm based on the sparsity and deep image priors (Fama-P) of natural images.
arXiv Detail & Related papers (2022-06-12T03:29:14Z) - HDNet: High-resolution Dual-domain Learning for Spectral Compressive
Imaging [138.04956118993934]
We propose a high-resolution dual-domain learning network (HDNet) for HSI reconstruction.
On the one hand, the proposed HR spatial-spectral attention module with its efficient feature fusion provides continuous and fine pixel-level features.
On the other hand, frequency domain learning (FDL) is introduced for HSI reconstruction to narrow the frequency domain discrepancy.
arXiv Detail & Related papers (2022-03-04T06:37:45Z) - Learning A 3D-CNN and Transformer Prior for Hyperspectral Image
Super-Resolution [80.93870349019332]
We propose a novel HSISR method that uses Transformer instead of CNN to learn the prior of HSIs.
Specifically, we first use the gradient algorithm to solve the HSISR model, and then use an unfolding network to simulate the iterative solution processes.
arXiv Detail & Related papers (2021-11-27T15:38:57Z) - Hyperspectral Mixed Noise Removal via Subspace Representation and
Weighted Low-rank Tensor Regularization [10.131033322742363]
We employ subspace representation and the weighted low-rank tensor regularization (SWLRTR) into the model to remove the mixed noise in the hyperspectral image.
Experiments demonstrate that the SWLRTR method performs better than other hyperspectral denoising methods quantitatively and visually.
arXiv Detail & Related papers (2021-11-13T05:30:56Z) - Hyperspectral Pansharpening Based on Improved Deep Image Prior and
Residual Reconstruction [64.10636296274168]
Hyperspectral pansharpening aims to synthesize a low-resolution hyperspectral image (LR-HSI) with a registered panchromatic image (PAN) to generate an enhanced HSI with high spectral and spatial resolution.
Recently proposed HS pansharpening methods have obtained remarkable results using deep convolutional networks (ConvNets)
We propose a novel over-complete network, called HyperKite, which focuses on learning high-level features by constraining the receptive from increasing in the deep layers.
arXiv Detail & Related papers (2021-07-06T14:11:03Z) - Non-local Meets Global: An Iterative Paradigm for Hyperspectral Image
Restoration [66.68541690283068]
We propose a unified paradigm combining the spatial and spectral properties for hyperspectral image restoration.
The proposed paradigm enjoys performance superiority from the non-local spatial denoising and light computation complexity.
Experiments on HSI denoising, compressed reconstruction, and inpainting tasks, with both simulated and real datasets, demonstrate its superiority.
arXiv Detail & Related papers (2020-10-24T15:53:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.