Efficient One-Step Diffusion Refinement for Snapshot Compressive Imaging
- URL: http://arxiv.org/abs/2409.07417v1
- Date: Wed, 11 Sep 2024 17:02:10 GMT
- Title: Efficient One-Step Diffusion Refinement for Snapshot Compressive Imaging
- Authors: Yunzhen Wang, Haijin Zeng, Shaoguang Huang, Hongyu Chen, Hongyan Zhang,
- Abstract summary: Coded Aperture Snapshot Spectral Imaging (CASSI) is a crucial technique for capturing three-dimensional multispectral images (MSIs)
Current state-of-the-art methods, predominantly end-to-end, face limitations in reconstructing high-frequency details.
This paper introduces a novel one-step Diffusion Probabilistic Model within a self-supervised adaptation framework for Snapshot Compressive Imaging.
- Score: 8.819370643243012
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Coded Aperture Snapshot Spectral Imaging (CASSI) is a crucial technique for capturing three-dimensional multispectral images (MSIs) through the complex inverse task of reconstructing these images from coded two-dimensional measurements. Current state-of-the-art methods, predominantly end-to-end, face limitations in reconstructing high-frequency details and often rely on constrained datasets like KAIST and CAVE, resulting in models with poor generalizability. In response to these challenges, this paper introduces a novel one-step Diffusion Probabilistic Model within a self-supervised adaptation framework for Snapshot Compressive Imaging (SCI). Our approach leverages a pretrained SCI reconstruction network to generate initial predictions from two-dimensional measurements. Subsequently, a one-step diffusion model produces high-frequency residuals to enhance these initial predictions. Additionally, acknowledging the high costs associated with collecting MSIs, we develop a self-supervised paradigm based on the Equivariant Imaging (EI) framework. Experimental results validate the superiority of our model compared to previous methods, showcasing its simplicity and adaptability to various end-to-end or unfolding techniques.
Related papers
- Latent Diffusion Prior Enhanced Deep Unfolding for Snapshot Spectral Compressive Imaging [17.511583657111792]
Snapshot spectral imaging reconstruction aims to reconstruct three-dimensional spatial-spectral images from a single-shot two-dimensional compressed measurement.
We introduce a generative model, namely the latent diffusion model (LDM), to generate degradation-free prior to deep unfolding method.
arXiv Detail & Related papers (2023-11-24T04:55:20Z) - DiffSCI: Zero-Shot Snapshot Compressive Imaging via Iterative Spectral
Diffusion Model [18.25548360119976]
This paper endeavors to advance the precision of snapshot compressive imaging (SCI) reconstruction for multispectral image (MSI)
We propose a novel structured zero-shot diffusion model, dubbed DiffSCI.
We present extensive testing to show that DiffSCI exhibits discernible performance enhancements over prevailing self-supervised and zero-shot approaches.
arXiv Detail & Related papers (2023-11-19T20:27:14Z) - Diffusion Models for Image Restoration and Enhancement -- A
Comprehensive Survey [96.99328714941657]
We present a comprehensive review of recent diffusion model-based methods on image restoration.
We classify and emphasize the innovative designs using diffusion models for both IR and blind/real-world IR.
We propose five potential and challenging directions for the future research of diffusion model-based IR.
arXiv Detail & Related papers (2023-08-18T08:40:38Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Exploiting Diffusion Prior for Real-World Image Super-Resolution [75.5898357277047]
We present a novel approach to leverage prior knowledge encapsulated in pre-trained text-to-image diffusion models for blind super-resolution.
By employing our time-aware encoder, we can achieve promising restoration results without altering the pre-trained synthesis model.
arXiv Detail & Related papers (2023-05-11T17:55:25Z) - IRGen: Generative Modeling for Image Retrieval [82.62022344988993]
In this paper, we present a novel methodology, reframing image retrieval as a variant of generative modeling.
We develop our model, dubbed IRGen, to address the technical challenge of converting an image into a concise sequence of semantic units.
Our model achieves state-of-the-art performance on three widely-used image retrieval benchmarks and two million-scale datasets.
arXiv Detail & Related papers (2023-03-17T17:07:36Z) - Universal Generative Modeling in Dual-domain for Dynamic MR Imaging [22.915796840971396]
We propose a k-space and image Du-al-Domain collaborative Universal Generative Model (DD-UGM) to reconstruct highly under-sampled measurements.
More precisely, we extract prior components from both image and k-space domains via a universal generative model and adaptively handle these prior components for faster processing.
arXiv Detail & Related papers (2022-12-15T03:04:48Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
We propose a novel deep neural network based regularizer which is trained in a generative setting on reference magnitude images only.
The results demonstrate competitive performance, on par with state-of-the-art end-to-end deep learning methods.
arXiv Detail & Related papers (2022-10-25T08:34:29Z) - Robust Single Image Dehazing Based on Consistent and Contrast-Assisted
Reconstruction [95.5735805072852]
We propose a novel density-variational learning framework to improve the robustness of the image dehzing model.
Specifically, the dehazing network is optimized under the consistency-regularized framework.
Our method significantly surpasses the state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-29T08:11:04Z) - Snapshot Hyperspectral Imaging Based on Weighted High-order Singular
Value Regularization [22.5033027930853]
Snapshot hyperspectral imaging can capture the 3D hyperspectral image (HSI) with a single 2D measurement.
Existing reconstruction methods cannot fully exploit the structurally spectral-spatial nature in 3D HSI.
We propose an effective high-order tensor optimization based method to boost the reconstruction fidelity for snapshot hyperspectral imaging.
arXiv Detail & Related papers (2021-01-22T02:54:55Z) - PaMIR: Parametric Model-Conditioned Implicit Representation for
Image-based Human Reconstruction [67.08350202974434]
We propose Parametric Model-Conditioned Implicit Representation (PaMIR), which combines the parametric body model with the free-form deep implicit function.
We show that our method achieves state-of-the-art performance for image-based 3D human reconstruction in the cases of challenging poses and clothing types.
arXiv Detail & Related papers (2020-07-08T02:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.