論文の概要: Artificial intelligence prediction of stock prices using social media
- arxiv url: http://arxiv.org/abs/2101.08986v1
- Date: Fri, 22 Jan 2021 07:47:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-21 02:44:46.844542
- Title: Artificial intelligence prediction of stock prices using social media
- Title(参考訳): ソーシャルメディアを用いた株価の人工知能予測
- Authors: Kavyashree Ranawat and Stefano Giani
- Abstract要約: この研究の主な目的は、ツイートを用いて株式市場の動きを予測するLSTMに基づくニューラルネットワークを開発することである。
LSTMネットワークで使用される単語埋め込みは、スタンフォード大学のGloVe埋め込みを使用して初期化されます。
このモデルの最終的なテスト精度は76.14%である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The primary objective of this work is to develop a Neural Network based on
LSTM to predict stock market movements using tweets. Word embeddings, used in
the LSTM network, are initialised using Stanford's GloVe embeddings, pretrained
specifically on 2 billion tweets. To overcome the limited size of the dataset,
an augmentation strategy is proposed to split each input sequence into 150
subsets. To achieve further improvements in the original configuration,
hyperparameter optimisation is performed. The effects of variation in
hyperparameters such as dropout rate, batch size, and LSTM hidden state output
size are assessed individually. Furthermore, an exhaustive set of parameter
combinations is examined to determine the optimal model configuration. The best
performance on the validation dataset is achieved by hyperparameter combination
0.4,8,100 for the dropout, batch size, and hidden units respectively. The final
testing accuracy of the model is 76.14%.
- Abstract(参考訳): この研究の主な目的は、ツイートを用いて株式市場の動きを予測するLSTMに基づくニューラルネットワークを開発することである。
lstmネットワークで使用される単語埋め込みは、スタンフォードのグラブ埋め込みを使用して初期化され、特に20億ツイートに事前学習されている。
データセットの限られたサイズを克服するために、各入力シーケンスを150個のサブセットに分割する拡張戦略を提案する。
元の構成をさらに改善するために、ハイパーパラメータ最適化を行う。
落下速度,バッチサイズ,LSTM隠れ状態出力サイズなどのハイパーパラメータの変動の影響を個別に評価する。
さらに,パラメータの組み合わせを網羅的に検討し,最適なモデル構成を決定する。
検証データセット上で最高のパフォーマンスは、それぞれドロップアウト、バッチサイズ、隠蔽ユニットのハイパーパラメータの組み合わせ0.4,8,100によって達成される。
このモデルの最終的なテスト精度は76.14%である。
関連論文リスト
- Practical Differentially Private Hyperparameter Tuning with Subsampling [12.437226707039448]
そこで我々は,ランダムな探索サンプルの数がランダム化されるような,微分プライベート(DP)機械学習(ML)アルゴリズムの新たなクラスを提案する。
我々は,これらの手法のDP境界と計算複雑性の両方を,機密データのランダムな部分集合のみを用いて下げることに焦点をあてる。
本稿では,提案手法に対するR'enyi差分プライバシー解析を行い,プライバシー利用のトレードオフの改善につながることを実験的に示す。
論文 参考訳(メタデータ) (2023-01-27T21:01:58Z) - Scaling & Shifting Your Features: A New Baseline for Efficient Model
Tuning [126.84770886628833]
既存の微調整法は、事前訓練されたモデルの全てのパラメータ(フル微調整)をチューニングするか、最後の線形層(線形プローブ)のみをチューニングする。
そこで本研究では,SSFと呼ばれるパラメータ効率の高いファインタニング手法を提案する。
論文 参考訳(メタデータ) (2022-10-17T08:14:49Z) - AlphaTuning: Quantization-Aware Parameter-Efficient Adaptation of
Large-Scale Pre-Trained Language Models [19.640997611256168]
我々は,事前学習された言語モデルの学習後の量子化と,対象タスクの量子化パラメータの一部のみを微調整するAlphaTuningを提案する。
具体的には、AlphaTuningはバイナリ符号化量子化を使用して、完全精度パラメータをバイナリパラメータとスケーリングファクタの別個のセットに分解する。
GPT-2 や OPT に適用されたAlphaTuning は,4ビット量子化条件下での圧縮率 >10x を実現し,トレーニング可能なパラメータ数 >1,000x の削減を図りながら,様々な下流タスクの完全な微調整と競合することを示した。
論文 参考訳(メタデータ) (2022-10-08T00:36:00Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
長期記憶リカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端のニューラルネットワーク言語モデル(NNLM)は非常に複雑になりつつある。
本稿では,LSTM-RNN と Transformer LM の基盤となる不確実性を考慮するために,ベイズ学習フレームワークの全体構造を提案する。
論文 参考訳(メタデータ) (2022-08-28T17:50:19Z) - Click Prediction Boosting via Ensemble Learning Pipelines [0.0]
オンライン旅行代理店(OTA)はメタ検索入札エンジンでウェブサイトを宣伝している。
この作業には、クリック予測性能を改善するために、様々な回帰器が組み込まれている。
結論として、アンサンブルモデルは予測性能を約10%向上させる。
論文 参考訳(メタデータ) (2022-06-07T21:19:13Z) - AUTOMATA: Gradient Based Data Subset Selection for Compute-Efficient
Hyper-parameter Tuning [72.54359545547904]
ハイパーパラメータチューニングのための勾配に基づくサブセット選択フレームワークを提案する。
ハイパーパラメータチューニングに勾配ベースのデータサブセットを用いることで、3$times$-30$times$のターンアラウンド時間とスピードアップが大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-03-15T19:25:01Z) - Survival Prediction of Children Undergoing Hematopoietic Stem Cell
Transplantation Using Different Machine Learning Classifiers by Performing
Chi-squared Test and Hyper-parameter Optimization: A Retrospective Analysis [4.067706269490143]
効率的な生存率分類モデルが包括的に提示される。
欠落した値を入力し、ダミー変数符号化を用いてデータを変換し、チ二乗特徴選択を用いて59個の特徴から11個の最も相関した特徴にデータセットを圧縮することにより、合成データセットを生成する。
この点に関しては、決定木(Decision Tree)、ランダムフォレスト(Random Forest)、ロジスティック回帰(Logistic Regression)、K-Nearest Neighbors(K-Nearest Neighbors)、グラディエントブースティング(Gradient Boosting)、Ada Boost(Ada Boost)、XG Boost(XG Boost)など、いくつかの教師付きML手法が訓練された。
論文 参考訳(メタデータ) (2022-01-22T08:01:22Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
トランスフォーマーベースの事前学習言語モデルは、パラメータ容量が大きいため、ほとんどのNLPタスクにおいて優れた性能を実現することができるが、計算コストも大きい。
スパースアクティベーション現象に基づく条件計算により,大規模モデル推論を高速化する。
そこで本研究では,モデルサイズが等しいMoE(Mix-of-experts)バージョン,すなわちMoEficationに変換することを提案する。
論文 参考訳(メタデータ) (2021-10-05T02:14:38Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
我々は、ニューラルネットワーク(NN)モデルの一般化精度を予測するために、コンテストで公に利用可能にされたモデルのコーパスを分析する。
メトリクスが全体としてよく機能するが、データのサブパーティションではあまり機能しない。
本稿では,データに依存しない2つの新しい形状指標と,一連のNNのテスト精度の傾向を予測できるデータ依存指標を提案する。
論文 参考訳(メタデータ) (2021-06-01T19:19:49Z) - Automatic Setting of DNN Hyper-Parameters by Mixing Bayesian
Optimization and Tuning Rules [0.6875312133832078]
トレーニングおよび検証セット上で,ネットワークの結果を評価し解析するための新しいアルゴリズムを構築した。
我々は、一連のチューニングルールを使用して、新しいハイパーパラメータと/またはハイパーパラメータ検索スペースを減らし、より良い組み合わせを選択する。
論文 参考訳(メタデータ) (2020-06-03T08:53:48Z) - Highly Efficient Salient Object Detection with 100K Parameters [137.74898755102387]
そこで我々は,段階内および複数ステージのマルチスケール機能を効率的に活用するために,フレキシブルな畳み込みモジュールであるOctoConv(gOctConv)を提案する。
我々は、非常に軽量なモデル、すなわちCSNetを構築し、一般的なオブジェクト検出ベンチマークで、約0.2%(100k)の大規模モデルで同等のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-03-12T07:00:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。