論文の概要: Artificial intelligence prediction of stock prices using social media
- arxiv url: http://arxiv.org/abs/2101.08986v1
- Date: Fri, 22 Jan 2021 07:47:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-21 02:44:46.844542
- Title: Artificial intelligence prediction of stock prices using social media
- Title(参考訳): ソーシャルメディアを用いた株価の人工知能予測
- Authors: Kavyashree Ranawat and Stefano Giani
- Abstract要約: この研究の主な目的は、ツイートを用いて株式市場の動きを予測するLSTMに基づくニューラルネットワークを開発することである。
LSTMネットワークで使用される単語埋め込みは、スタンフォード大学のGloVe埋め込みを使用して初期化されます。
このモデルの最終的なテスト精度は76.14%である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The primary objective of this work is to develop a Neural Network based on
LSTM to predict stock market movements using tweets. Word embeddings, used in
the LSTM network, are initialised using Stanford's GloVe embeddings, pretrained
specifically on 2 billion tweets. To overcome the limited size of the dataset,
an augmentation strategy is proposed to split each input sequence into 150
subsets. To achieve further improvements in the original configuration,
hyperparameter optimisation is performed. The effects of variation in
hyperparameters such as dropout rate, batch size, and LSTM hidden state output
size are assessed individually. Furthermore, an exhaustive set of parameter
combinations is examined to determine the optimal model configuration. The best
performance on the validation dataset is achieved by hyperparameter combination
0.4,8,100 for the dropout, batch size, and hidden units respectively. The final
testing accuracy of the model is 76.14%.
- Abstract(参考訳): この研究の主な目的は、ツイートを用いて株式市場の動きを予測するLSTMに基づくニューラルネットワークを開発することである。
lstmネットワークで使用される単語埋め込みは、スタンフォードのグラブ埋め込みを使用して初期化され、特に20億ツイートに事前学習されている。
データセットの限られたサイズを克服するために、各入力シーケンスを150個のサブセットに分割する拡張戦略を提案する。
元の構成をさらに改善するために、ハイパーパラメータ最適化を行う。
落下速度,バッチサイズ,LSTM隠れ状態出力サイズなどのハイパーパラメータの変動の影響を個別に評価する。
さらに,パラメータの組み合わせを網羅的に検討し,最適なモデル構成を決定する。
検証データセット上で最高のパフォーマンスは、それぞれドロップアウト、バッチサイズ、隠蔽ユニットのハイパーパラメータの組み合わせ0.4,8,100によって達成される。
このモデルの最終的なテスト精度は76.14%である。
- 全文 参考訳へのリンク
関連論文リスト
- Automatic Machine Learning for Multi-Receiver CNN Technology Classifiers [16.244541005112747]
畳み込みニューラルネットワーク(CNN)は、信号分類のための最も研究されているディープラーニングモデルの1つである。
我々は、複数の同期受信機から収集した生のI/Qサンプルに基づく技術分類に焦点を当てた。
論文 参考訳(メタデータ) (2022-04-28T23:41:38Z) - AUTOMATA: Gradient Based Data Subset Selection for Compute-Efficient
Hyper-parameter Tuning [72.54359545547904]
ハイパーパラメータチューニングのための勾配に基づくサブセット選択フレームワークを提案する。
ハイパーパラメータチューニングに勾配ベースのデータサブセットを用いることで、3$times$-30$times$のターンアラウンド時間とスピードアップが大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-03-15T19:25:01Z) - Parameter estimation for WMTI-Watson model of white matter using
encoder-decoder recurrent neural network [0.0]
本研究では,ラットおよびヒト脳のデータセット上でのNLLS,RNN法および多層パーセプトロン(MLP)の性能を評価する。
提案手法は,NLLSよりも計算時間を大幅に短縮できるという利点を示した。
論文 参考訳(メタデータ) (2022-03-01T16:33:15Z) - Survival Prediction of Children Undergoing Hematopoietic Stem Cell
Transplantation Using Different Machine Learning Classifiers by Performing
Chi-squared Test and Hyper-parameter Optimization: A Retrospective Analysis [4.067706269490143]
効率的な生存率分類モデルが包括的に提示される。
欠落した値を入力し、ダミー変数符号化を用いてデータを変換し、チ二乗特徴選択を用いて59個の特徴から11個の最も相関した特徴にデータセットを圧縮することにより、合成データセットを生成する。
この点に関しては、決定木(Decision Tree)、ランダムフォレスト(Random Forest)、ロジスティック回帰(Logistic Regression)、K-Nearest Neighbors(K-Nearest Neighbors)、グラディエントブースティング(Gradient Boosting)、Ada Boost(Ada Boost)、XG Boost(XG Boost)など、いくつかの教師付きML手法が訓練された。
論文 参考訳(メタデータ) (2022-01-22T08:01:22Z) - Hyperparameter Tuning is All You Need for LISTA [92.7008234085887]
Learned Iterative Shrinkage-Thresholding Algorithm (LISTA)は、反復アルゴリズムをアンロールしてニューラルネットワークのようにトレーニングするという概念を導入している。
LISTAネットワークの中間変数に運動量を加えることで、より優れた収束率が得られることを示す。
この超軽量ネットワークをHyperLISTAと呼ぶ。
論文 参考訳(メタデータ) (2021-10-29T16:35:38Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
トランスフォーマーベースの事前学習言語モデルは、パラメータ容量が大きいため、ほとんどのNLPタスクにおいて優れた性能を実現することができるが、計算コストも大きい。
スパースアクティベーション現象に基づく条件計算により,大規模モデル推論を高速化する。
そこで本研究では,モデルサイズが等しいMoE(Mix-of-experts)バージョン,すなわちMoEficationに変換することを提案する。
論文 参考訳(メタデータ) (2021-10-05T02:14:38Z) - Genetic CFL: Optimization of Hyper-Parameters in Clustered Federated
Learning [4.710427287359642]
Federated Learning(FL)は、クライアントサーバアーキテクチャ、エッジコンピューティング、リアルタイムインテリジェンスを統合した、ディープラーニングのための分散モデルである。
FLは機械学習(ML)に革命を起こす能力を持っているが、技術的制限、通信オーバーヘッド、非IID(独立で同一の分散データ)、プライバシー上の懸念による実装の実践性に欠ける。
本稿では,遺伝的クラスタ化FL(Genetic CFL)と呼ばれるハイブリッドアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-07-15T10:16:05Z) - Score-based Generative Modeling in Latent Space [93.8985523558869]
スコアベース生成モデル(SGM)は,最近,サンプル品質と分布範囲の両面で顕著な結果を示した。
本稿では,Latent Score-based Generative Model (LSGM)を提案する。
データから潜在空間への移動により、より表現力のある生成モデルをトレーニングし、非連続データにSGMを適用し、よりスムーズなSGMをより小さな空間で学習することができる。
論文 参考訳(メタデータ) (2021-06-10T17:26:35Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
我々は、ニューラルネットワーク(NN)モデルの一般化精度を予測するために、コンテストで公に利用可能にされたモデルのコーパスを分析する。
メトリクスが全体としてよく機能するが、データのサブパーティションではあまり機能しない。
本稿では,データに依存しない2つの新しい形状指標と,一連のNNのテスト精度の傾向を予測できるデータ依存指標を提案する。
論文 参考訳(メタデータ) (2021-06-01T19:19:49Z) - Intrinsic Dimensionality Explains the Effectiveness of Language Model
Fine-Tuning [52.624194343095304]
我々は、内在次元のレンズを通して微調整を分析することは、経験的および理論的直観をもたらすと論じる。
実験により、一般的な事前学習モデルは本質的な次元が極めて低いことを示す。
論文 参考訳(メタデータ) (2020-12-22T07:42:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。