論文の概要: CMSAOne@Dravidian-CodeMix-FIRE2020: A Meta Embedding and Transformer
model for Code-Mixed Sentiment Analysis on Social Media Text
- arxiv url: http://arxiv.org/abs/2101.09004v1
- Date: Fri, 22 Jan 2021 08:48:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-21 02:05:41.791113
- Title: CMSAOne@Dravidian-CodeMix-FIRE2020: A Meta Embedding and Transformer
model for Code-Mixed Sentiment Analysis on Social Media Text
- Title(参考訳): cmsaone@dravidian-codemix-fire2020:ソーシャルメディアテキストにおけるコード混合感情分析のためのメタ埋め込みおよびトランスフォーマーモデル
- Authors: Suman Dowlagar, Radhika Mamidi
- Abstract要約: コードミックス(CM)は、発話や文で複数の言語を使用する頻繁に観察される現象です。
感性分析(SA)はNLPの基本的なステップであり、モノリンガルテキストでよく研究されている。
本稿では,dravidian code-mixedデータセット上での感情分析のためのトランスフォーマによるメタ埋め込みを提案する。
- 参考スコア(独自算出の注目度): 9.23545668304066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Code-mixing(CM) is a frequently observed phenomenon that uses multiple
languages in an utterance or sentence. CM is mostly practiced on various social
media platforms and in informal conversations. Sentiment analysis (SA) is a
fundamental step in NLP and is well studied in the monolingual text.
Code-mixing adds a challenge to sentiment analysis due to its non-standard
representations. This paper proposes a meta embedding with a transformer method
for sentiment analysis on the Dravidian code-mixed dataset. In our method, we
used meta embeddings to capture rich text representations. We used the proposed
method for the Task: "Sentiment Analysis for Dravidian Languages in Code-Mixed
Text", and it achieved an F1 score of $0.58$ and $0.66$ for the given Dravidian
code mixed data sets. The code is provided in the Github
https://github.com/suman101112/fire-2020-Dravidian-CodeMix.
- Abstract(参考訳): コード混合(cm)は、発話または文において複数の言語を使用する頻繁に観察される現象である。
CMは主に様々なソーシャルメディアプラットフォームや非公式な会話で行われている。
感性分析(SA)はNLPの基本ステップであり、モノリンガルテキストでよく研究されている。
code-mixingは、その非標準表現のために感情分析に挑戦する。
本稿では,dravidian code-mixedデータセット上での感情分析のためのトランスフォーマによるメタ埋め込みを提案する。
提案手法では,リッチテキスト表現のキャプチャにメタ埋め込みを用いた。
提案手法は,「コード混合テキストにおけるドビダ語言語の強調分析」であり,与えられたドヴィダ語コード混合データセットに対して0.58$と0.66$のf1スコアを得た。
コードはGithub https://github.com/suman101112/fire-2020-Dravidian-CodeMixで公開されている。
関連論文リスト
- Uncovering LLM-Generated Code: A Zero-Shot Synthetic Code Detector via Code Rewriting [78.48355455324688]
そこで本研究では,コードと書き直された変種との類似性に基づいて,ゼロショット合成符号検出器を提案する。
以上の結果から,既存のテキスト用合成コンテンツ検出装置よりも顕著な向上が見られた。
論文 参考訳(メタデータ) (2024-05-25T08:57:28Z) - Transformer-based Model for Word Level Language Identification in
Code-mixed Kannada-English Texts [55.41644538483948]
コードミキシングしたカンナダ英語テキストにおける単語レベル言語識別のためのトランスフォーマーベースモデルを提案する。
The proposed model on the CoLI-Kenglish dataset achieves a weighted F1-score of 0.84 and a macro F1-score of 0.61。
論文 参考訳(メタデータ) (2022-11-26T02:39:19Z) - Interactive Code Generation via Test-Driven User-Intent Formalization [60.90035204567797]
大きな言語モデル(LLM)は、非公式な自然言語(NL)の意図からコードを生成する。
自然言語は曖昧であり、形式的な意味論が欠けているため、正確性の概念を定義するのは難しい。
言語に依存しない抽象アルゴリズムと具体的な実装TiCoderについて述べる。
論文 参考訳(メタデータ) (2022-08-11T17:41:08Z) - M-Adapter: Modality Adaptation for End-to-End Speech-to-Text Translation [66.92823764664206]
テキストに音声表現を適応させる新しいトランスフォーマーベースのモジュールであるM-Adapterを提案する。
音声シーケンスを縮小しながら、M-Adapterは音声からテキストへの翻訳に必要な機能を生成する。
実験の結果,我々のモデルは最大1BLEUで強いベースラインを達成できた。
論文 参考訳(メタデータ) (2022-07-03T04:26:53Z) - IIITT@Dravidian-CodeMix-FIRE2021: Transliterate or translate? Sentiment
analysis of code-mixed text in Dravidian languages [0.0]
本研究は,カナダ語,タミル語,マラヤラム語において,コードミキシングによるソーシャルメディアコメントの感情分析という形で,この研究に小さな貢献をしている。
FIRE 2021でDravidian-CodeMix氏が行った共有タスクの作業について説明している。
結果は,タミル,カナダ,マラヤラムの各タスクにおいて,最良モデルが4位,第5位,第10位であった研究論文に記録されている。
論文 参考訳(メタデータ) (2021-11-15T16:57:59Z) - Contextual Hate Speech Detection in Code Mixed Text using Transformer
Based Approaches [0.0]
我々は,Twitterのコード混在テキストにおけるヘイトスピーチ検出の自動化手法を提案する。
通常のアプローチでは、テキストを個別に分析するが、親ツイートの形でコンテンツテキストも活用する。
独立表現を用いたデュアルエンコーダ方式により性能が向上することを示す。
論文 参考訳(メタデータ) (2021-10-18T14:05:36Z) - Exploiting BERT For Multimodal Target SentimentClassification Through
Input Space Translation [75.82110684355979]
オブジェクト認識変換器を用いて入力空間内の画像を変換する2ストリームモデルを提案する。
次に、翻訳を利用して、言語モデルに多モーダル情報を提供する補助文を構築する。
2つのマルチモーダルTwitterデータセットで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-08-03T18:02:38Z) - JUNLP@Dravidian-CodeMix-FIRE2020: Sentiment Classification of Code-Mixed
Tweets using Bi-Directional RNN and Language Tags [14.588109573710431]
本稿では、双方向LSTMと言語タグ付けを用いて、ソーシャルメディアから抽出したコードミキシングタミルテキストの感情タグ付けを容易にする。
提案アルゴリズムは精度、リコール、F1スコアはそれぞれ0.59点、0.66点、0.58点である。
論文 参考訳(メタデータ) (2020-10-20T08:10:29Z) - NLP-CIC at SemEval-2020 Task 9: Analysing sentiment in code-switching
language using a simple deep-learning classifier [63.137661897716555]
コードスイッチングは、2つ以上の言語が同じメッセージで使用される現象である。
標準的な畳み込みニューラルネットワークモデルを用いて、スペイン語と英語の混在するツイートの感情を予測する。
論文 参考訳(メタデータ) (2020-09-07T19:57:09Z) - C1 at SemEval-2020 Task 9: SentiMix: Sentiment Analysis for Code-Mixed
Social Media Text using Feature Engineering [0.9646922337783134]
本稿では,SemEval-2020 Task 9: SentiMixのコード混合ソーシャルメディアテキストにおける感情分析における特徴工学的アプローチについて述べる。
重み付きF1スコアは、"Hinglish"タスクが0.65、"Spanglish"タスクが0.63となる。
論文 参考訳(メタデータ) (2020-08-09T00:46:26Z) - Unsupervised Sentiment Analysis for Code-mixed Data [33.939487457110566]
モノリンガルテキストからコードミキシングテキストへの知識の伝達を効率的に行うために,多言語および多言語間埋め込みを用いた手法を提案する。
我々の手法は、英語とスペイン語のコード混合感情分析において、絶対的な3%のF1スコアを上回りました。
論文 参考訳(メタデータ) (2020-01-20T06:12:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。