論文の概要: Does a Hybrid Neural Network based Feature Selection Model Improve Text
Classification?
- arxiv url: http://arxiv.org/abs/2101.09009v1
- Date: Fri, 22 Jan 2021 09:12:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-21 01:47:16.143936
- Title: Does a Hybrid Neural Network based Feature Selection Model Improve Text
Classification?
- Title(参考訳): ハイブリッドニューラルネットワークによる特徴選択モデルはテキスト分類を改善するか?
- Authors: Suman Dowlagar, Radhika Mamidi
- Abstract要約: 関連する特徴を得るためのハイブリッド特徴選択手法を提案する。
次に、特徴選択とニューラルネットワークパイプラインを実装する3つの方法を示す。
また,いくつかのデータセットの精度もわずかに向上した。
- 参考スコア(独自算出の注目度): 9.23545668304066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text classification is a fundamental problem in the field of natural language
processing. Text classification mainly focuses on giving more importance to all
the relevant features that help classify the textual data. Apart from these,
the text can have redundant or highly correlated features. These features
increase the complexity of the classification algorithm. Thus, many
dimensionality reduction methods were proposed with the traditional machine
learning classifiers. The use of dimensionality reduction methods with machine
learning classifiers has achieved good results. In this paper, we propose a
hybrid feature selection method for obtaining relevant features by combining
various filter-based feature selection methods and fastText classifier. We then
present three ways of implementing a feature selection and neural network
pipeline. We observed a reduction in training time when feature selection
methods are used along with neural networks. We also observed a slight increase
in accuracy on some datasets.
- Abstract(参考訳): テキスト分類は自然言語処理の分野における根本的な問題である。
テキスト分類は主に、テキストデータを分類するのに役立つすべての関連する特徴をより重要視することに焦点を当てている。
これらとは別に、テキストには冗長性や高い相関性がある。
これらの特徴は分類アルゴリズムの複雑さを高める。
そこで,従来の機械学習分類器を用いて次元削減手法を多数提案した。
機械学習分類器を用いた次元削減手法は良好な結果を得た。
本稿では,様々なフィルタベースの特徴選択手法と高速テキスト分類器を組み合わせることで,関連する特徴を抽出するハイブリッド特徴選択手法を提案する。
次に、特徴選択とニューラルネットワークパイプラインを実装する3つの方法を示す。
ニューラルネットワークと共に特徴選択法を用いる場合のトレーニング時間の短縮を観察した。
また,いくつかのデータセットの精度も若干向上した。
関連論文リスト
- Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [73.02413694753423]
本稿では,CSUFS (Compactness Score) と呼ばれる高速な教師なし特徴選択手法を提案する。
提案アルゴリズムは既存のアルゴリズムよりも正確で効率的である。
論文 参考訳(メタデータ) (2022-01-31T13:01:37Z) - Khmer Text Classification Using Word Embedding and Neural Networks [0.0]
Khmerテキストの様々な分類手法について論じる。
Khmerワード埋め込みモデルは、ワードベクトル表現を構築するために、30万のKhmerワードコーパスで訓練される。
複数クラス・複数ラベルのテキスト分類タスクに対して,ニュース記事データセット上での異なるアプローチの性能を評価する。
論文 参考訳(メタデータ) (2021-12-13T15:57:32Z) - Speech Emotion Recognition Using Deep Sparse Auto-Encoder Extreme
Learning Machine with a New Weighting Scheme and Spectro-Temporal Features
Along with Classical Feature Selection and A New Quantum-Inspired Dimension
Reduction Method [3.8073142980733]
音声信号に基づく音声感情認識システム(SER)を提案する。
このシステムは,特徴抽出,特徴選択,最後に特徴分類という3つの段階から構成される。
従来の重み付け法よりも効率的なクラス不均衡に対処する新しい重み付け法も提案されている。
論文 参考訳(メタデータ) (2021-11-13T11:09:38Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
セマンティックセグメンテーションのためのモデルに依存しない訓練手法を提案する。
各トレーニングイテレーションで特定のクラス情報をランダムに除去することにより、クラス間の機能依存を効果的に削減する。
提案手法で訓練したモデルは,複数のセマンティックセグメンテーションベンチマークにおいて強い結果を示す。
論文 参考訳(メタデータ) (2021-10-31T16:15:09Z) - A concise method for feature selection via normalized frequencies [0.0]
本稿では,普遍的特徴選択のための簡潔な手法を提案する。
提案手法は, フィルタ法とラッパー法を融合して行う。
評価結果から,提案手法は,精度,精度,リコール,Fスコア,AUCの点で,いくつかの最先端技術に優れた性能を示した。
論文 参考訳(メタデータ) (2021-06-10T15:29:54Z) - Feature Selection Using Batch-Wise Attenuation and Feature Mask
Normalization [6.6357750579293935]
本稿では,新しいバッチ単位の減衰と特徴マスク正規化に基づく特徴選択のための特徴マスクモジュール(FM-モジュール)を提案する。
一般的な画像,テキスト,音声のデータセットを用いた実験により,我々のアプローチは使いやすく,最先端のディープラーニングに基づく特徴選択手法と比較して優れた性能を示した。
論文 参考訳(メタデータ) (2020-10-26T14:46:38Z) - Binary Stochastic Filtering: feature selection and beyond [0.0]
この研究は、スパシティ正規化の使用方法を再考することによって、機能を自動的に選択する機能を備えたニューラルネットワークの拡張を目指している。
提案手法は,計算オーバーヘッドを最小あるいはゼロに抑えた古典的手法と比較して,優れた効率性を示した。
論文 参考訳(メタデータ) (2020-07-08T06:57:10Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
ReMarNet(Relation-and-Margin Learning Network)と呼ばれるニューラルネットワークを導入する。
本手法は,上記2つの分類機構の双方において優れた性能を発揮する特徴を学習するために,異なるバックボーンの2つのネットワークを組み立てる。
4つの画像データセットを用いた実験により,本手法はラベル付きサンプルの小さな集合から識別的特徴を学習するのに有効であることが示された。
論文 参考訳(メタデータ) (2020-06-27T13:50:20Z) - Ensemble Wrapper Subsampling for Deep Modulation Classification [70.91089216571035]
受信した無線信号のサブサンプリングは、ハードウェア要件と信号処理アルゴリズムの計算コストを緩和するために重要である。
本稿では,無線通信システムにおけるディープラーニングを用いた自動変調分類のためのサブサンプリング手法を提案する。
論文 参考訳(メタデータ) (2020-05-10T06:11:13Z) - Selecting Relevant Features from a Multi-domain Representation for
Few-shot Classification [91.67977602992657]
本稿では,従来の特徴適応手法よりもシンプルかつ効果的である特徴選択に基づく新しい戦略を提案する。
このような特徴の上に構築された単純な非パラメトリック分類器は高い精度を示し、訓練中に見たことのない領域に一般化する。
論文 参考訳(メタデータ) (2020-03-20T15:44:17Z) - Learning Class Regularized Features for Action Recognition [68.90994813947405]
本稿では,階層活性化のクラスベース正規化を行うクラス正規化手法を提案する。
動作認識に最先端CNNアーキテクチャのクラス正規化ブロックを用いることで,Kineetics,UCF-101,HMDB-51データセットにおいて,それぞれ1.8%,1.2%,1.4%の体系的改善が得られた。
論文 参考訳(メタデータ) (2020-02-07T07:27:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。