Rethinking Domain Generalization Baselines
- URL: http://arxiv.org/abs/2101.09060v2
- Date: Wed, 27 Jan 2021 10:41:53 GMT
- Title: Rethinking Domain Generalization Baselines
- Authors: Francesco Cappio Borlino, Antonio D'Innocente, Tatiana Tommasi
- Abstract summary: deep learning models can be brittle when deployed in scenarios different from those on which they were trained.
Data augmentation strategies have shown to be helpful tools to increase data variability, supporting model robustness across domains.
This issue open new scenarios for domain generalization research, highlighting the need of novel methods properly able to take advantage of the introduced data variability.
- Score: 21.841393368012977
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite being very powerful in standard learning settings, deep learning
models can be extremely brittle when deployed in scenarios different from those
on which they were trained. Domain generalization methods investigate this
problem and data augmentation strategies have shown to be helpful tools to
increase data variability, supporting model robustness across domains. In our
work we focus on style transfer data augmentation and we present how it can be
implemented with a simple and inexpensive strategy to improve generalization.
Moreover, we analyze the behavior of current state of the art domain
generalization methods when integrated with this augmentation solution: our
thorough experimental evaluation shows that their original effect almost always
disappears with respect to the augmented baseline. This issue open new
scenarios for domain generalization research, highlighting the need of novel
methods properly able to take advantage of the introduced data variability.
Related papers
- Back to Basics: A Simple Recipe for Improving Out-of-Domain Retrieval in
Dense Encoders [63.28408887247742]
We study whether training procedures can be improved to yield better generalization capabilities in the resulting models.
We recommend a simple recipe for training dense encoders: Train on MSMARCO with parameter-efficient methods, such as LoRA, and opt for using in-batch negatives unless given well-constructed hard negatives.
arXiv Detail & Related papers (2023-11-16T10:42:58Z) - LatentDR: Improving Model Generalization Through Sample-Aware Latent
Degradation and Restoration [22.871920291497094]
We propose a novel approach for distribution-aware latent augmentation.
Our approach first degrades the samples in the latent space, mapping them to augmented labels, and then restores the samples during training.
We show that our method can be flexibly adapted to long-tail recognition tasks, demonstrating its versatility in building more generalizable models.
arXiv Detail & Related papers (2023-08-28T14:08:42Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - When Neural Networks Fail to Generalize? A Model Sensitivity Perspective [82.36758565781153]
Domain generalization (DG) aims to train a model to perform well in unseen domains under different distributions.
This paper considers a more realistic yet more challenging scenario, namely Single Domain Generalization (Single-DG)
We empirically ascertain a property of a model that correlates strongly with its generalization that we coin as "model sensitivity"
We propose a novel strategy of Spectral Adversarial Data Augmentation (SADA) to generate augmented images targeted at the highly sensitive frequencies.
arXiv Detail & Related papers (2022-12-01T20:15:15Z) - Normalization Perturbation: A Simple Domain Generalization Method for
Real-World Domain Shifts [133.99270341855728]
Real-world domain styles can vary substantially due to environment changes and sensor noises.
Deep models only know the training domain style.
We propose Normalization Perturbation to overcome this domain style overfitting problem.
arXiv Detail & Related papers (2022-11-08T17:36:49Z) - Back-to-Bones: Rediscovering the Role of Backbones in Domain
Generalization [1.6799377888527687]
Domain Generalization studies the capability of a deep learning model to generalize to out-of-training distributions.
Recent research has provided a reproducible benchmark for DG, pointing out the effectiveness of naive empirical risk minimization (ERM) over existing algorithms.
In this paper, we evaluate the backbones proposing a comprehensive analysis of their intrinsic generalization capabilities.
arXiv Detail & Related papers (2022-09-02T15:30:17Z) - Augmentation based unsupervised domain adaptation [2.304713283039168]
Deep learning models trained on small and unrepresentative data tend to outperform when deployed in data that differs from the one used for training.
Our approach takes advantage of the properties of adversarial domain adaptation and consistency training to achieve more robust adaptation.
arXiv Detail & Related papers (2022-02-23T13:06:07Z) - Generalization of Reinforcement Learning with Policy-Aware Adversarial
Data Augmentation [32.70482982044965]
We propose a novel policy-aware adversarial data augmentation method to augment the standard policy learning method with automatically generated trajectory data.
We conduct experiments on a number of RL tasks to investigate the generalization performance of the proposed method.
The results show our method can generalize well with limited training diversity, and achieve the state-of-the-art generalization test performance.
arXiv Detail & Related papers (2021-06-29T17:21:59Z) - Feature-based Style Randomization for Domain Generalization [27.15070576861912]
Domain generalization (DG) aims to first learn a generic model on multiple source domains and then directly generalize to an arbitrary unseen target domain without any additional adaptions.
This paper develops a simple yet effective feature-based style randomization module to achieve feature-level augmentation.
Compared with existing image-level augmentation, our feature-level augmentation favors a more goal-oriented and sample-diverse way.
arXiv Detail & Related papers (2021-06-06T16:34:44Z) - Semi-Supervised Domain Generalization with Stochastic StyleMatch [90.98288822165482]
In real-world applications, we might have only a few labels available from each source domain due to high annotation cost.
In this work, we investigate semi-supervised domain generalization, a more realistic and practical setting.
Our proposed approach, StyleMatch, is inspired by FixMatch, a state-of-the-art semi-supervised learning method based on pseudo-labeling.
arXiv Detail & Related papers (2021-06-01T16:00:08Z) - Learning to Generalize Unseen Domains via Memory-based Multi-Source
Meta-Learning for Person Re-Identification [59.326456778057384]
We propose the Memory-based Multi-Source Meta-Learning framework to train a generalizable model for unseen domains.
We also present a meta batch normalization layer (MetaBN) to diversify meta-test features.
Experiments demonstrate that our M$3$L can effectively enhance the generalization ability of the model for unseen domains.
arXiv Detail & Related papers (2020-12-01T11:38:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.