論文の概要: Effects of Pre- and Post-Processing on type-based Embeddings in Lexical
Semantic Change Detection
- arxiv url: http://arxiv.org/abs/2101.09368v2
- Date: Tue, 26 Jan 2021 19:32:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-20 18:18:13.258852
- Title: Effects of Pre- and Post-Processing on type-based Embeddings in Lexical
Semantic Change Detection
- Title(参考訳): 語彙意味変化検出における前・後処理がタイプベース埋め込みに及ぼす影響
- Authors: Jens Kaiser, Sinan Kurtyigit, Serge Kotchourko, Dominik Schlechtweg
- Abstract要約: 既存のモデルを(i)大きなコーパス上で事前トレーニングし、悪名高い小さなデータ問題に取り組むダイアクロニックターゲットコーパスを精錬することで最適化する。
本結果は,様々な学習シナリオを対象とした語彙意味変化検出モデルの適用と最適化のガイドを提供する。
- 参考スコア(独自算出の注目度): 4.7677261488999205
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lexical semantic change detection is a new and innovative research field. The
optimal fine-tuning of models including pre- and post-processing is largely
unclear. We optimize existing models by (i) pre-training on large corpora and
refining on diachronic target corpora tackling the notorious small data
problem, and (ii) applying post-processing transformations that have been shown
to improve performance on synchronic tasks. Our results provide a guide for the
application and optimization of lexical semantic change detection models across
various learning scenarios.
- Abstract(参考訳): 語彙的意味変化検出は、新しく革新的な研究分野である。
事前処理や後処理を含むモデルの最適微調整はほとんど不明である。
i) 大規模コーパスの事前学習と, 悪名高い小データ問題に対処するダイアクロニックターゲットコーパスの精製, および (ii) 同期タスクの性能向上を目的とした後処理変換の適用により, 既存のモデルを最適化する。
本結果は,様々な学習シナリオを対象とした語彙意味変化検出モデルの適用と最適化のガイドを提供する。
関連論文リスト
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
正規化勾配差(NGDiff)アルゴリズムを導入し、目的間のトレードオフをよりよく制御できるようにする。
本研究では,TOFUおよびMUSEデータセットにおける最先端の未学習手法において,NGDiffの優れた性能を実証的に実証し,理論的解析を行った。
論文 参考訳(メタデータ) (2024-10-29T14:41:44Z) - Adjusting Pretrained Backbones for Performativity [34.390793811659556]
本稿では,事前学習したバックボーンをモジュラー方式で演奏性に適応させる新しい手法を提案する。
再学習軌道に沿った損失を減らし、候補モデルの中から効果的に選択し、性能劣化を予測できることを示す。
論文 参考訳(メタデータ) (2024-10-06T14:41:13Z) - Uncovering mesa-optimization algorithms in Transformers [61.06055590704677]
いくつかの自己回帰モデルは、入力シーケンスが処理されたときに学習でき、パラメータの変更を受けずに、それを行うように明示的に訓練されていない。
我々は,新しい入力が明らかになったときにモデルを調整するための補助学習アルゴリズムが,標準の次トーケン予測誤差最小化によって生まれることを示す。
本研究は、自己回帰損失最小化の産物としてコンテキスト内学習を説明し、新しい最適化ベースのトランスフォーマー層の設計を通知する。
論文 参考訳(メタデータ) (2023-09-11T22:42:50Z) - Revisiting Consistency Regularization for Semi-Supervised Learning [80.28461584135967]
そこで我々は,FeatDistLossというシンプルな手法により,一貫性の規則化を改良したフレームワークを提案する。
実験結果から,本モデルは様々なデータセットや設定のための新しい技術状態を定義する。
論文 参考訳(メタデータ) (2021-12-10T20:46:13Z) - Learning to Refit for Convex Learning Problems [11.464758257681197]
ニューラルネットワークを用いて、異なるトレーニングセットに対して最適化されたモデルパラメータを推定するフレームワークを提案する。
我々は、凸問題を近似するためにニューラルネットワークのパワーを厳格に特徴づける。
論文 参考訳(メタデータ) (2021-11-24T15:28:50Z) - Learning Neural Models for Natural Language Processing in the Face of
Distributional Shift [10.990447273771592]
特定のデータセットでひとつのタスクを実行するための強力な神経予測器をトレーニングするNLPのパラダイムが、さまざまなアプリケーションで最先端のパフォーマンスを実現している。
データ分布が定常である、すなわち、トレーニングとテストの時間の両方で、データは固定された分布からサンプリングされる、という仮定に基づいて構築される。
この方法でのトレーニングは、人間が絶えず変化する情報の流れの中で学習し、操作できる方法と矛盾する。
データ分散がモデル寿命の経過とともにシフトすることが期待される実世界のユースケースに不適応である。
論文 参考訳(メタデータ) (2021-09-03T14:29:20Z) - Real-Time Optimization Meets Bayesian Optimization and Derivative-Free
Optimization: A Tale of Modifier Adaptation [0.0]
本稿では,不確実なプロセスのリアルタイム最適化において,プラントモデルミスマッチを克服するための修飾子適応方式について検討する。
提案したスキームは物理モデルを組み込んでおり、探査中のリスクを最小限に抑えるために信頼領域のアイデアに依存している。
取得関数の使用、プロセスノイズレベルを知る、または名目上のプロセスモデルを指定する利点を図示する。
論文 参考訳(メタデータ) (2020-09-18T12:57:17Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
未知パラメータで最適化問題を解くには、未知パラメータの値を予測し、これらの値を用いて問題を解くための予測モデルを学ぶ必要がある。
最近の研究によると、複雑なトレーニングモデルパイプラインのレイヤーとして最適化の問題を含めると、観測されていない意思決定の繰り返しを予測することになる。
我々は,大規模最適化問題の低次元サロゲートモデルを学習することにより,解の質を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-06-18T19:11:54Z) - Dynamic Scale Training for Object Detection [111.33112051962514]
本稿では,オブジェクト検出におけるスケール変動問題を軽減するために,動的スケールトレーニングパラダイム(DST)を提案する。
提案したDSTのスケール変動処理に対する有効性を示す実験結果を得た。
推論オーバーヘッドを導入せず、一般的な検出設定のための無料ランチとして機能する。
論文 参考訳(メタデータ) (2020-04-26T16:48:17Z) - FLAT: Few-Shot Learning via Autoencoding Transformation Regularizers [67.46036826589467]
本稿では,データ例のラベルを使わずに,変換の分布によって引き起こされる特徴表現の変化を学習することで,新たな正規化機構を提案する。
エンコードされた特徴レベルで変換強化されたバリエーションを検査することで、ベースカテゴリへのオーバーフィットのリスクを最小限に抑えることができる。
実験結果から,文学における現在の最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2019-12-29T15:26:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。