Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline
- URL: http://arxiv.org/abs/2101.09640v1
- Date: Sun, 24 Jan 2021 03:55:39 GMT
- Title: Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline
- Authors: Hu Wang, Hao Chen, Qi Wu, Congbo Ma, Yidong Li, Chunhua Shen
- Abstract summary: Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
- Score: 85.9210953301628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The control of traffic signals is fundamental and critical to alleviate
traffic congestion in urban areas. However, it is challenging since traffic
dynamics are complicated in real situations. Because of the high complexity of
modelling the optimisation problem, experimental settings of current works are
often inconsistent. Moreover, it is not trivial to control multiple
intersections properly in real complex traffic scenarios due to its vast state
and action space. Failing to take intersection topology relations into account
also results in inferior traffic condition. To address these issues, in this
work we carefully design our settings and propose new data including both
synthetic and real traffic data in more complex scenarios. Additionally, we
propose a novel and strong baseline model based on deep reinforcement learning
with the encoder-decoder structure: an edge-weighted graph convolutional
encoder to excavate multi-intersection relations; and a unified structure
decoder to jointly model multiple junctions in a comprehensive manner, which
significantly reduces the number of the model parameters. By doing so, the
proposed model is able to effectively deal with multi-intersection traffic
optimisation problems. Models have been trained and tested on both synthetic
and real maps and traffic data with the Simulation of Urban Mobility (SUMO)
simulator. Experimental results show that the proposed model surpasses existing
methods in the literature.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Fusion Matrix Prompt Enhanced Self-Attention Spatial-Temporal Interactive Traffic Forecasting Framework [2.9490249935740573]
We propose a Fusion Matrix Prompt Enhanced Self-Attention Spatial-Temporal Interactive Traffic Forecasting Framework (FMPESTF)
FMPESTF is composed of spatial and temporal modules for down-sampling traffic data.
We introduce attention mechanism in time modeling, and design hierarchical spatial-temporal interactive learning to help the model adapt to various traffic scenarios.
arXiv Detail & Related papers (2024-10-12T03:47:27Z) - Graph Attention Network for Lane-Wise and Topology-Invariant Intersection Traffic Simulation [8.600701437207725]
We propose two efficient and accurate "Digital Twin" models for intersections.
These digital twins capture temporal, spatial, and contextual aspects of traffic within intersections.
Our study's applications extend to lane reconfiguration, driving behavior analysis, and facilitating informed decisions regarding intersection safety and efficiency enhancements.
arXiv Detail & Related papers (2024-04-11T03:02:06Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - Dynamic Hypergraph Structure Learning for Traffic Flow Forecasting [35.0288931087826]
Traffic flow forecasting aims to predict future traffic conditions on the basis of networks and traffic conditions in the past.
The problem is typically solved by modeling complex-temporal correlations in traffic data using far-temporal neural networks (GNNs)
Existing methods follow the paradigm of message passing that aggregates neighborhood information linearly.
In this paper, we propose a model named Dynamic Hyper Structure Learning (DyHSL) for traffic flow prediction.
arXiv Detail & Related papers (2023-09-21T12:44:55Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - STLGRU: Spatio-Temporal Lightweight Graph GRU for Traffic Flow
Prediction [0.40964539027092917]
We propose STLGRU, a novel traffic forecasting model for predicting traffic flow accurately.
Our proposed STLGRU can effectively capture dynamic local and global spatial-temporal relations of traffic networks.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2022-12-08T20:24:59Z) - Spatio-Temporal Look-Ahead Trajectory Prediction using Memory Neural
Network [6.065344547161387]
This paper attempts to solve the problem of Spatio-temporal look-ahead trajectory prediction using a novel recurrent neural network called the Memory Neuron Network.
The proposed model is computationally less intensive and has a simple architecture as compared to other deep learning models that utilize LSTMs and GRUs.
arXiv Detail & Related papers (2021-02-24T05:02:19Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z) - Multi-Agent Routing Value Iteration Network [88.38796921838203]
We propose a graph neural network based model that is able to perform multi-agent routing based on learned value in a sparsely connected graph.
We show that our model trained with only two agents on graphs with a maximum of 25 nodes can easily generalize to situations with more agents and/or nodes.
arXiv Detail & Related papers (2020-07-09T22:16:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.