Spatio-Temporal Look-Ahead Trajectory Prediction using Memory Neural
Network
- URL: http://arxiv.org/abs/2102.12070v1
- Date: Wed, 24 Feb 2021 05:02:19 GMT
- Title: Spatio-Temporal Look-Ahead Trajectory Prediction using Memory Neural
Network
- Authors: Nishanth Rao and Suresh Sundaram
- Abstract summary: This paper attempts to solve the problem of Spatio-temporal look-ahead trajectory prediction using a novel recurrent neural network called the Memory Neuron Network.
The proposed model is computationally less intensive and has a simple architecture as compared to other deep learning models that utilize LSTMs and GRUs.
- Score: 6.065344547161387
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prognostication of vehicle trajectories in unknown environments is
intrinsically a challenging and difficult problem to solve. The behavior of
such vehicles is highly influenced by surrounding traffic, road conditions, and
rogue participants present in the environment. Moreover, the presence of
pedestrians, traffic lights, stop signs, etc., makes it much harder to infer
the behavior of various traffic agents. This paper attempts to solve the
problem of Spatio-temporal look-ahead trajectory prediction using a novel
recurrent neural network called the Memory Neuron Network. The Memory Neuron
Network (MNN) attempts to capture the input-output relationship between the
past positions and the future positions of the traffic agents. The proposed
model is computationally less intensive and has a simple architecture as
compared to other deep learning models that utilize LSTMs and GRUs. It is then
evaluated on the publicly available NGSIM dataset and its performance is
compared with several state-of-art algorithms. Additionally, the performance is
also evaluated on a custom synthetic dataset generated from the CARLA
simulator. It is seen that the proposed model outperforms the existing
state-of-art algorithms. Finally, the model is integrated with the CARLA
simulator to test its robustness in real-time traffic scenarios.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - A Multi-Graph Convolutional Neural Network Model for Short-Term Prediction of Turning Movements at Signalized Intersections [0.6215404942415159]
This study introduces a novel deep learning architecture, referred to as the multigraph convolution neural network (MGCNN) for turning movement prediction at intersections.
The proposed architecture combines a multigraph structure, built to model temporal variations in traffic data, with a spectral convolution operation to support modeling the spatial variations in traffic data over the graphs.
The model's ability to perform short-term predictions over 1, 2, 3, 4, and 5 minutes into the future was evaluated against four baseline state-of-the-art models.
arXiv Detail & Related papers (2024-06-02T05:41:25Z) - Attention-based Spatial-Temporal Graph Neural ODE for Traffic Prediction [3.4806267677524896]
We propose attention-based graph neural ODE (AST) that explicitly learns the dynamics of the traffic system.
Our model aggregates traffic patterns of different periods and has satisfactory performance on two real-world traffic data sets.
arXiv Detail & Related papers (2023-05-01T00:58:48Z) - A spatial-temporal short-term traffic flow prediction model based on
dynamical-learning graph convolution mechanism [0.0]
Short-term traffic flow prediction is a vital branch of the Intelligent Traffic System (ITS) and plays an important role in traffic management.
Graph convolution network (GCN) is widely used in traffic prediction models to better deal with the graphical structure data of road networks.
To deal with this drawback, this paper proposes a novel location graph convolutional network (Location-GCN)
arXiv Detail & Related papers (2022-05-10T09:19:12Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Spatial-Temporal Map Vehicle Trajectory Detection Using Dynamic Mode
Decomposition and Res-UNet+ Neural Networks [0.0]
This paper presents a machine-learning-enhanced longitudinal scanline method to extract vehicle trajectories from high-angle traffic cameras.
The Dynamic Mode Decomposition (DMD) method is applied to extract vehicle strands by decomposing the Spatial-Temporal Map (STMap) into the sparse foreground and low-rank background.
A deep neural network named Res-UNet+ was designed for the semantic segmentation task by adapting two prevalent deep learning architectures.
arXiv Detail & Related papers (2022-01-13T00:49:24Z) - A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN [59.57221522897815]
We propose a neural network model based on trajectories information for driving behavior recognition.
We evaluate the proposed model on the public BLVD dataset, achieving a satisfying performance.
arXiv Detail & Related papers (2021-03-01T06:47:29Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - Pedestrian Trajectory Prediction with Convolutional Neural Networks [0.3787359747190393]
We propose a new approach to pedestrian trajectory prediction, with the introduction of a novel 2D convolutional model.
This new model outperforms recurrent models, and it achieves state-of-the-art results on the ETH and TrajNet datasets.
We also present an effective system to represent pedestrian positions and powerful data augmentation techniques.
arXiv Detail & Related papers (2020-10-12T15:51:01Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.