論文の概要: Two-step Machine Learning Approach for Channel Estimation with Mixed
Resolution RF Chains
- arxiv url: http://arxiv.org/abs/2101.09705v1
- Date: Sun, 24 Jan 2021 12:33:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-16 09:10:13.435508
- Title: Two-step Machine Learning Approach for Channel Estimation with Mixed
Resolution RF Chains
- Title(参考訳): 混合リゾリューションRFチェーンを用いたチャネル推定のための2ステップ機械学習手法
- Authors: Brenda Vilas Boas, Wolfgang Zirwas and Martin Haardt
- Abstract要約: 機械学習(ML)アルゴリズムを適用し,効率的なアップリンクチャネル推定手法を提案する。
第1ステップでは、条件付き生成逆転ネットワーク(cGAN)は、フル解像度RFチェーンの限られたセットから低解像度RFチェーンアンテナ要素の残りの部分まで、無線チャネルを予測します。
長期長期メモリ(LSTM)ニューラルネットワークは、低分解能RFチェーンアンテナ要素からさらなる位相情報を抽出します。
- 参考スコア(独自算出の注目度): 19.0581196881206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Massive MIMO is one of the main features of 5G mobile radio systems. However,
it often leads to high cost, size and power consumption. To overcome these
issues, the use of constrained radio frequency (RF) frontends has been
proposed, as well as novel precoders, e.g., a multi-antenna, greedy, iterative
and quantized precoding algorithm (MAGIQ). Nevertheless, the best performance
of MAGIQ assumes accurate channel knowledge per antenna element, for example,
from uplink sounding reference signals. In this context, we propose an
efficient uplink channel estimator by applying machine learning (ML)
algorithms. In a first step a conditional generative adversarial network (cGAN)
predicts the radio channels from a limited set of full resolution RF chains to
the rest of the low resolution RF chain antenna elements. A long-short term
memory (LSTM) neural network extracts further phase information from the low
resolution RF chain antenna elements. Our results indicate that our proposed
approach is competitive with traditional Unitary tensor-ESPRIT in scenarios
with various closely spaced multipath components (MPCs).
- Abstract(参考訳): MIMOは5Gモバイル無線システムの主要な特徴の1つである。
しかし、それはしばしば高いコスト、サイズ、電力消費につながります。
これらの問題を克服するために、制約付き周波数(rf)フロントエンドや、マルチアンテナ、欲望、反復および量子化プリコーディングアルゴリズム(magiq)などの新しいプリコーダの使用が提案されている。
それでも、MAGIQの最高の性能は、例えばアップリンクの参照信号からアンテナ要素当たりの正確なチャネル知識を仮定する。
本稿では機械学習(ML)アルゴリズムを適用し,効率的なアップリンクチャネル推定手法を提案する。
第1ステップでは、条件付き生成逆転ネットワーク(cGAN)は、フル解像度RFチェーンの限られたセットから低解像度RFチェーンアンテナ要素の残りの部分まで、無線チャネルを予測します。
長期長期メモリ(LSTM)ニューラルネットワークは、低分解能RFチェーンアンテナ要素からさらなる位相情報を抽出します。
提案手法は, 従来のユニタリテンソルESPRITと, 様々な密接な空間を持つマルチパスコンポーネント (MPC) のシナリオで競合することを示す。
関連論文リスト
- RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge [66.33067693672696]
本稿では、新しいデータ駆動手法を用いて、高周波信号における干渉拒否の重大な問題に対処する。
まず、干渉除去アルゴリズムの開発と解析の基礎となる洞察に富んだ信号モデルを提案する。
第2に,さまざまなRF信号とコードテンプレートを備えた公開データセットであるRF Challengeを紹介する。
第3に,UNetやWaveNetなどのアーキテクチャにおいて,新しいAIに基づく拒絶アルゴリズムを提案し,その性能を8種類の信号混合タイプで評価する。
論文 参考訳(メタデータ) (2024-09-13T13:53:41Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
本稿では,CSI行列内の固有周波数領域相関を明らかにするエンコーダデコーダに基づくネットワークを提案する。
エンコーダ・デコーダネットワーク全体がチャネル圧縮に使用される。
提案手法は,共同作業における現状のチャネル推定およびフィードバック技術より優れる。
論文 参考訳(メタデータ) (2023-06-08T06:15:17Z) - Deep Learning-Based Synchronization for Uplink NB-IoT [72.86843435313048]
狭帯域モノのインターネット(NB-IoT)における狭帯域物理ランダムアクセスチャネル(NPRACH)のデバイス検出と到着時刻推定のためのニューラルネットワーク(NN)に基づくアルゴリズムを提案する。
導入されたNNアーキテクチャは、残余の畳み込みネットワークと、5Gニューラジオ(5G NR)仕様のプリアンブル構造に関する知識を利用する。
論文 参考訳(メタデータ) (2022-05-22T12:16:43Z) - DEFORM: A Practical, Universal Deep Beamforming System [4.450750414447688]
我々は、ユニバーサルレシーバービームフォーミング技術を紹介し、設計し、評価する。
我々のアプローチとシステムDEFORMは、深層学習(DL)ベースのRXビームフォーミングであり、マルチアンテナRF受信機において大きな利益をもたらす。
論文 参考訳(メタデータ) (2022-03-18T03:52:18Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
将来的な通信網は、異種無線デバイスの成長に対応するために、少ないスペクトルに対処する必要がある。
我々は、深層ニューラルネットワークに基づくマルチタスク学習フレームワークの可能性を利用して、変調と信号分類タスクを同時に学習する。
公共利用のための包括的ヘテロジニアス無線信号データセットを提供する。
論文 参考訳(メタデータ) (2022-02-26T14:51:02Z) - Waveform Learning for Next-Generation Wireless Communication Systems [16.26230847183709]
本稿では,送信受信フィルタ,星座形状,それに付随するビットラベリング,およびニューラルネットワーク(NN)ベースの検出器の結合設計のための学習に基づく手法を提案する。
この方法は、隣接するチャネルリーク比(ACLR)とピーク・ツー・アベイジ・パワー比(PAPR)の制約を同時に満たしつつ、達成可能な情報レートを最大化する。
論文 参考訳(メタデータ) (2021-09-02T14:51:16Z) - Deep Learning Based Hybrid Precoding in Dual-Band Communication Systems [34.03893373401685]
本研究では,サブ6GHz帯から抽出した空間的・時間的情報を用いてミリ波帯のビームを予測・追跡する深層学習手法を提案する。
サブ6GHz帯とミリ波帯の両方で動作するデュアルバンド通信システムについて検討する。
論文 参考訳(メタデータ) (2021-07-16T12:10:32Z) - Deep Learning Based Antenna Selection for Channel Extrapolation in FDD
Massive MIMO [54.54508321463112]
大規模なマルチインプット多重出力(MIMO)システムでは、多数のアンテナが正確なチャネル状態情報を取得する上で大きな課題となる。
ニューラルネットワーク(NN)を用いて、アップリンクとダウンリンクチャネルデータセット間の固有の接続を捕捉し、アップリンクチャネル状態情報のサブセットからダウンリンクチャネルを外挿する。
アンテナサブセット選択問題について検討し、最高のチャネル外挿を実現し、NNのデータサイズを小さくする。
論文 参考訳(メタデータ) (2020-09-03T13:38:52Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
本稿では,mmWave IRSシステムに対するディープデノイングニューラルネットワークを用いた圧縮チャネル推定法を提案する。
我々はまず、受信チェーンをほとんど使わず、アップリンクのユーザ-IRSチャネルを推定するハイブリッド・パッシブ/アクティブIRSアーキテクチャを導入する。
完全チャネル行列は、圧縮センシングに基づいて限られた測定値から再構成することができる。
論文 参考訳(メタデータ) (2020-06-03T12:18:57Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
フェデレートラーニング(Federated Learning)は、無線デバイスとのコラボレーションによって、中央サーバでグローバルモデルをトレーニングするための、プライバシ保護のアプローチである。
本稿では,大規模マルチインプット多出力通信システム上でのフェデレーション学習のための圧縮センシング手法を提案する。
論文 参考訳(メタデータ) (2020-03-18T05:56:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。