Knowledge Grounded Conversational Symptom Detection with Graph Memory
Networks
- URL: http://arxiv.org/abs/2101.09773v1
- Date: Sun, 24 Jan 2021 18:50:16 GMT
- Title: Knowledge Grounded Conversational Symptom Detection with Graph Memory
Networks
- Authors: Hongyin Luo, Shang-Wen Li, James Glass
- Abstract summary: We build a system that can interact with patients through dialog to detect and collect clinical symptoms automatically.
Given a set of explicit symptoms provided by the patient to initiate a dialog for diagnosing, the system is trained to collect implicit symptoms by asking questions.
After getting the reply from the patient for each question, the system also decides whether current information is enough for a human doctor to make a diagnosis.
- Score: 5.788153402669881
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we propose a novel goal-oriented dialog task, automatic symptom
detection. We build a system that can interact with patients through dialog to
detect and collect clinical symptoms automatically, which can save a doctor's
time interviewing the patient. Given a set of explicit symptoms provided by the
patient to initiate a dialog for diagnosing, the system is trained to collect
implicit symptoms by asking questions, in order to collect more information for
making an accurate diagnosis. After getting the reply from the patient for each
question, the system also decides whether current information is enough for a
human doctor to make a diagnosis. To achieve this goal, we propose two neural
models and a training pipeline for the multi-step reasoning task. We also build
a knowledge graph as additional inputs to further improve model performance.
Experiments show that our model significantly outperforms the baseline by 4%,
discovering 67% of implicit symptoms on average with a limited number of
questions.
Related papers
- A Two-Stage Proactive Dialogue Generator for Efficient Clinical Information Collection Using Large Language Model [0.6926413609535759]
We propose a diagnostic dialogue system to automate the patient information collection procedure.
By exploiting medical history and conversation logic, our conversation agents can pose multi-round clinical queries.
Our experimental results on a real-world medical conversation dataset show that our model can generate clinical queries that mimic the conversation style of real doctors.
arXiv Detail & Related papers (2024-10-02T19:32:11Z) - Towards Knowledge-Infused Automated Disease Diagnosis Assistant [14.150224660741939]
We build a diagnosis assistant to assist doctors, which identifies diseases based on patient-doctor interaction.
We propose a two-channel, discourse-aware disease diagnosis model (KI-DDI), where the first channel encodes patient-doctor communication.
In the next stage, the conversation and knowledge graph embeddings are infused together and fed to a deep neural network for disease identification.
arXiv Detail & Related papers (2024-05-18T05:18:50Z) - Uncertainty of Thoughts: Uncertainty-Aware Planning Enhances Information Seeking in Large Language Models [73.79091519226026]
Uncertainty of Thoughts (UoT) is an algorithm to augment large language models with the ability to actively seek information by asking effective questions.
In experiments on medical diagnosis, troubleshooting, and the 20 Questions game, UoT achieves an average performance improvement of 38.1% in the rate of successful task completion.
arXiv Detail & Related papers (2024-02-05T18:28:44Z) - Are Generative AI systems Capable of Supporting Information Needs of
Patients? [4.485098382568721]
We investigate whether and how generative visual question answering systems can responsibly support patient information needs in the context of radiology imaging data.
We conducted a formative need-finding study in which participants discussed chest computed tomography (CT) scans and associated radiology reports of a fictitious close relative with a cardiothoracic radiologist.
Using thematic analysis of the conversation between participants and medical experts, we identified commonly occurring themes across interactions.
We evaluate two state-of-the-art generative visual language models against the radiologist's responses.
arXiv Detail & Related papers (2024-01-31T23:24:37Z) - Generating medically-accurate summaries of patient-provider dialogue: A
multi-stage approach using large language models [6.252236971703546]
An effective summary is required to be coherent and accurately capture all the medically relevant information in the dialogue.
This paper tackles the problem of medical conversation summarization by discretizing the task into several smaller dialogue-understanding tasks.
arXiv Detail & Related papers (2023-05-10T08:48:53Z) - "My nose is running.""Are you also coughing?": Building A Medical
Diagnosis Agent with Interpretable Inquiry Logics [80.55587329326046]
We propose a more interpretable decision process to implement the dialogue manager of DSMD.
We devise a model with highly transparent components to conduct the inference.
Experiments show that our method obtains 7.7%, 10.0%, 3.0% absolute improvement in diagnosis accuracy.
arXiv Detail & Related papers (2022-04-29T09:02:23Z) - A Benchmark for Automatic Medical Consultation System: Frameworks, Tasks
and Datasets [70.32630628211803]
We propose two frameworks to support automatic medical consultation, namely doctor-patient dialogue understanding and task-oriented interaction.
A new large medical dialogue dataset with multi-level fine-grained annotations is introduced.
We report a set of benchmark results for each task, which shows the usability of the dataset and sets a baseline for future studies.
arXiv Detail & Related papers (2022-04-19T16:43:21Z) - Efficient Symptom Inquiring and Diagnosis via Adaptive Alignment of
Reinforcement Learning and Classification [0.6415701940560564]
We first propose a novel method for medical automatic diagnosis with symptom inquiring and disease diagnosing formulated as a reinforcement learning task and a classification task, respectively.
We create a new dataset extracted from the MedlinePlus knowledge base that contains more diseases and more complete symptom information.
Experimental evaluation results show that our method outperforms three recent state-of-the-art methods on different datasets.
arXiv Detail & Related papers (2021-12-01T11:25:42Z) - Semi-Supervised Variational Reasoning for Medical Dialogue Generation [70.838542865384]
Two key characteristics are relevant for medical dialogue generation: patient states and physician actions.
We propose an end-to-end variational reasoning approach to medical dialogue generation.
A physician policy network composed of an action-classifier and two reasoning detectors is proposed for augmented reasoning ability.
arXiv Detail & Related papers (2021-05-13T04:14:35Z) - MedDG: An Entity-Centric Medical Consultation Dataset for Entity-Aware
Medical Dialogue Generation [86.38736781043109]
We build and release a large-scale high-quality Medical Dialogue dataset related to 12 types of common Gastrointestinal diseases named MedDG.
We propose two kinds of medical dialogue tasks based on MedDG dataset. One is the next entity prediction and the other is the doctor response generation.
Experimental results show that the pre-train language models and other baselines struggle on both tasks with poor performance in our dataset.
arXiv Detail & Related papers (2020-10-15T03:34:33Z) - Towards Causality-Aware Inferring: A Sequential Discriminative Approach
for Medical Diagnosis [142.90770786804507]
Medical diagnosis assistant (MDA) aims to build an interactive diagnostic agent to sequentially inquire about symptoms for discriminating diseases.
This work attempts to address these critical issues in MDA by taking advantage of the causal diagram.
We propose a propensity-based patient simulator to effectively answer unrecorded inquiry by drawing knowledge from the other records.
arXiv Detail & Related papers (2020-03-14T02:05:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.