Exploring the Inquiry-Diagnosis Relationship with Advanced Patient Simulators
- URL: http://arxiv.org/abs/2501.09484v2
- Date: Tue, 11 Mar 2025 06:54:09 GMT
- Title: Exploring the Inquiry-Diagnosis Relationship with Advanced Patient Simulators
- Authors: Zhaocheng Liu, Quan Tu, Wen Ye, Yu Xiao, Zhishou Zhang, Hengfu Cui, Yalun Zhu, Qiang Ju, Shizheng Li, Jian Xie,
- Abstract summary: This paper extracts dialogue strategies from real doctor-patient conversations to guide the training of a patient simulator.<n>Our simulator shows higher anthropomorphism and lower hallucination rates, using dynamic dialogue strategies.
- Score: 5.217925404425509
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recently, large language models have shown great potential to transform online medical consultation. Despite this, most research targets improving diagnostic accuracy with ample information, often overlooking the inquiry phase. Some studies try to evaluate or refine doctor models by using prompt-engineered patient agents. However, prompt engineering alone falls short in accurately simulating real patients. We need to explore new paradigms for patient simulation. Furthermore, the relationship between inquiry and diagnosis remains unexplored. This paper extracts dialogue strategies from real doctor-patient conversations to guide the training of a patient simulator. Our simulator shows higher anthropomorphism and lower hallucination rates, using dynamic dialogue strategies. This innovation offers a more accurate evaluation of diagnostic models and generates realistic synthetic data. We conduct extensive experiments on the relationship between inquiry and diagnosis, showing they adhere to Liebig's law: poor inquiry limits diagnosis effectiveness, regardless of diagnostic skill, and vice versa. The experiments also reveal substantial differences in inquiry performance among models. To delve into this phenomenon, the inquiry process is categorized into four distinct types. Analyzing the distribution of inquiries across these types helps explain the performance differences. The weights of our patient simulator are available https://github.com/PatientSimulator/PatientSimulator.
Related papers
- LLMs Can Simulate Standardized Patients via Agent Coevolution [8.539733225671059]
Training medical personnel using standardized patients (SPs) remains a complex challenge.
EvoPatient is a novel simulated patient framework in which a patient agent and doctor agents simulate the diagnostic process through multi-turn dialogues.
Our framework improves over existing reasoning methods by more than 10% in requirement alignment and better human preference.
arXiv Detail & Related papers (2024-12-16T12:36:47Z) - Automatic Differential Diagnosis using Transformer-Based Multi-Label Sequence Classification [0.0]
We propose a transformer-based approach for providing differential diagnoses based on a patient's age, sex, medical history, and symptoms.
We use the DDXPlus dataset, which provides differential diagnosis information for patients based on 49 disease types.
arXiv Detail & Related papers (2024-08-28T14:40:15Z) - Conversational Disease Diagnosis via External Planner-Controlled Large Language Models [18.93345199841588]
This study presents a LLM-based diagnostic system that enhances planning capabilities by emulating doctors.
By utilizing real patient electronic medical record data, we constructed simulated dialogues between virtual patients and doctors.
arXiv Detail & Related papers (2024-04-04T06:16:35Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Uncertainty of Thoughts: Uncertainty-Aware Planning Enhances Information Seeking in Large Language Models [73.79091519226026]
Uncertainty of Thoughts (UoT) is an algorithm to augment large language models with the ability to actively seek information by asking effective questions.
In experiments on medical diagnosis, troubleshooting, and the 20 Questions game, UoT achieves an average performance improvement of 38.1% in the rate of successful task completion.
arXiv Detail & Related papers (2024-02-05T18:28:44Z) - Are Generative AI systems Capable of Supporting Information Needs of
Patients? [4.485098382568721]
We investigate whether and how generative visual question answering systems can responsibly support patient information needs in the context of radiology imaging data.
We conducted a formative need-finding study in which participants discussed chest computed tomography (CT) scans and associated radiology reports of a fictitious close relative with a cardiothoracic radiologist.
Using thematic analysis of the conversation between participants and medical experts, we identified commonly occurring themes across interactions.
We evaluate two state-of-the-art generative visual language models against the radiologist's responses.
arXiv Detail & Related papers (2024-01-31T23:24:37Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
We study the task of cognitive distortion detection and propose the Diagnosis of Thought (DoT) prompting.
DoT performs diagnosis on the patient's speech via three stages: subjectivity assessment to separate the facts and the thoughts; contrastive reasoning to elicit the reasoning processes supporting and contradicting the thoughts; and schema analysis to summarize the cognition schemas.
Experiments demonstrate that DoT obtains significant improvements over ChatGPT for cognitive distortion detection, while generating high-quality rationales approved by human experts.
arXiv Detail & Related papers (2023-10-11T02:47:21Z) - Language models are susceptible to incorrect patient self-diagnosis in
medical applications [0.0]
We present a variety of LLMs with multiple-choice questions from U.S. medical board exams modified to include self-diagnostic reports from patients.
Our findings highlight that when a patient proposes incorrect bias-validating information, the diagnostic accuracy of LLMs drop dramatically.
arXiv Detail & Related papers (2023-09-17T19:56:39Z) - Towards the Identifiability and Explainability for Personalized Learner
Modeling: An Inductive Paradigm [36.60917255464867]
We propose an identifiable cognitive diagnosis framework (ID-CDF) based on a novel response-proficiency-response paradigm inspired by encoder-decoder models.
We show that ID-CDF can effectively address the problems without loss of diagnosis preciseness.
arXiv Detail & Related papers (2023-09-01T07:18:02Z) - RECAP-KG: Mining Knowledge Graphs from Raw GP Notes for Remote COVID-19
Assessment in Primary Care [45.43645878061283]
We present a framework that performs knowledge graph construction from raw GP medical notes written during or after patient consultations.
Our knowledge graphs include information about existing patient symptoms, their duration, and their severity.
We apply our framework to consultation notes of COVID-19 patients in the UK.
arXiv Detail & Related papers (2023-06-17T23:35:51Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
We report a Transformer-based representation-learning model as a clinical diagnostic aid that processes multimodal input in a unified manner.
The unified model outperformed an image-only model and non-unified multimodal diagnosis models in the identification of pulmonary diseases.
arXiv Detail & Related papers (2023-06-01T16:23:47Z) - Scalable Online Disease Diagnosis via Multi-Model-Fused Actor-Critic
Reinforcement Learning [9.274138493400436]
For those seeking healthcare advice online, AI based dialogue agents capable of interacting with patients to perform automatic disease diagnosis are a viable option.
This can be formulated as a problem of sequential feature (symptom) selection and classification for which reinforcement learning (RL) approaches have been proposed as a natural solution.
We propose a Multi-Model-Fused Actor-Critic (MMF-AC) RL framework that consists of a generative actor network and a diagnostic critic network.
arXiv Detail & Related papers (2022-06-08T03:06:16Z) - Efficient Symptom Inquiring and Diagnosis via Adaptive Alignment of
Reinforcement Learning and Classification [0.6415701940560564]
We first propose a novel method for medical automatic diagnosis with symptom inquiring and disease diagnosing formulated as a reinforcement learning task and a classification task, respectively.
We create a new dataset extracted from the MedlinePlus knowledge base that contains more diseases and more complete symptom information.
Experimental evaluation results show that our method outperforms three recent state-of-the-art methods on different datasets.
arXiv Detail & Related papers (2021-12-01T11:25:42Z) - Semi-Supervised Variational Reasoning for Medical Dialogue Generation [70.838542865384]
Two key characteristics are relevant for medical dialogue generation: patient states and physician actions.
We propose an end-to-end variational reasoning approach to medical dialogue generation.
A physician policy network composed of an action-classifier and two reasoning detectors is proposed for augmented reasoning ability.
arXiv Detail & Related papers (2021-05-13T04:14:35Z) - Knowledge Grounded Conversational Symptom Detection with Graph Memory
Networks [5.788153402669881]
We build a system that can interact with patients through dialog to detect and collect clinical symptoms automatically.
Given a set of explicit symptoms provided by the patient to initiate a dialog for diagnosing, the system is trained to collect implicit symptoms by asking questions.
After getting the reply from the patient for each question, the system also decides whether current information is enough for a human doctor to make a diagnosis.
arXiv Detail & Related papers (2021-01-24T18:50:16Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z) - Towards Causality-Aware Inferring: A Sequential Discriminative Approach
for Medical Diagnosis [142.90770786804507]
Medical diagnosis assistant (MDA) aims to build an interactive diagnostic agent to sequentially inquire about symptoms for discriminating diseases.
This work attempts to address these critical issues in MDA by taking advantage of the causal diagram.
We propose a propensity-based patient simulator to effectively answer unrecorded inquiry by drawing knowledge from the other records.
arXiv Detail & Related papers (2020-03-14T02:05:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.