論文の概要: Fighting deepfakes by detecting GAN DCT anomalies
- arxiv url: http://arxiv.org/abs/2101.09781v3
- Date: Mon, 15 Feb 2021 10:07:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-16 09:13:13.012973
- Title: Fighting deepfakes by detecting GAN DCT anomalies
- Title(参考訳): GAN DCT異常検出によるディープフェイク対策
- Authors: Oliver Giudice (1), Luca Guarnera (1 and 2), Sebastiano Battiato (1
and 2) ((1) University of Catania, (2) iCTLab s.r.l. - Spin-off of University
of Catania)
- Abstract要約: 最先端アルゴリズムはディープニューラルネットワークを使って偽のコンテンツを検出する。
ディープフェイク画像の高精度判別が可能な新しい高速検出法を提案する。
この手法は革新的であり、最先端技術を超え、説明可能性の観点から多くの洞察を与えている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthetic multimedia contents created through AI technologies, such as
Generative Adversarial Networks (GAN), applied to human faces can have serious
social and political consequences. State-of-the-art algorithms employ deep
neural networks to detect fake contents but, unfortunately, almost all
approaches appear to be neither generalizable nor explainable. In this paper, a
new fast detection method able to discriminate Deepfake images with high
precision is proposed. By employing Discrete Cosine Transform (DCT), anomalous
frequencies in real and Deepfake image datasets were analyzed. The \beta
statistics inferred by the distribution of AC coefficients have been the key to
recognize GAN-engine generated images. The proposed technique has been
validated on pristine high quality images of faces synthesized by different GAN
architectures. Experiments carried out show that the method is innovative,
exceeds the state-of-the-art and also gives many insights in terms of
explainability.
- Abstract(参考訳): 人間の顔に適用されるGAN(Generative Adversarial Networks)のようなAI技術によって作成された合成マルチメディアコンテンツは、深刻な社会的および政治的結果をもたらす可能性があります。
最先端のアルゴリズムはディープニューラルネットワークを使って偽のコンテンツを検出するが、残念ながらほとんどのアプローチは一般化も説明もできないようだ。
本稿では,Deepfake画像の高精度な識別が可能な新しい高速検出手法を提案する。
離散コサイン変換 (DCT) を用いて, 実画像データセットとDeepfake画像データセットの異常周波数を解析した。
ac係数の分布によって推定される \beta統計はganエンジン生成画像を認識する鍵となっている。
提案手法は異なるganアーキテクチャにより合成された顔の高品質画像上で検証されている。
実験により,本手法は革新的であり,最先端技術を超え,説明可能性の観点から多くの洞察を与えることができた。
関連論文リスト
- GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
フォトリアリスティック・ジェネレータの急速な進歩は、真の画像と操作された画像の相違がますます不明瞭になっている臨界点に達している。
公開されている顔の偽造データセットはいくつかあるが、偽造顔は主にGANベースの合成技術を用いて生成される。
我々は,大規模で多様できめ細かな高忠実度データセットであるGenFaceを提案し,ディープフェイク検出の進展を促進する。
論文 参考訳(メタデータ) (2024-02-03T03:13:50Z) - Rethinking the Up-Sampling Operations in CNN-based Generative Network
for Generalizable Deepfake Detection [86.97062579515833]
我々は、アップサンプリング操作から生じる一般化された構造的アーティファクトをキャプチャし、特徴付ける手段として、NPR(Neighboring Pixel Relationships)の概念を紹介した。
tft28の異なる生成モデルによって生成されたサンプルを含む、オープンワールドデータセット上で包括的な分析を行う。
この分析は、新しい最先端のパフォーマンスを確立し、既存の手法よりも優れたtft11.6%の向上を示している。
論文 参考訳(メタデータ) (2023-12-16T14:27:06Z) - Generalized Deepfakes Detection with Reconstructed-Blended Images and
Multi-scale Feature Reconstruction Network [14.749857283918157]
未確認データセットに対する堅牢な適用性を有するブレンドベース検出手法を提案する。
実験により、この手法により、未知のデータ上でのクロスマニピュレーション検出とクロスデータセット検出の両方のパフォーマンスが向上することが示された。
論文 参考訳(メタデータ) (2023-12-13T09:49:15Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
ディープフェイク検出(Deepfake detection)とは、画像やビデオにおいて、人工的に生成された顔や編集された顔を検出すること。
本稿では,実顔と偽顔とを適応的に識別するDeepFidelityという新しいDeepfake検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-07T07:19:45Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
Deepfake技術によって生成された鍛造画像は、デジタル情報の信頼性に深刻な脅威をもたらします。
本稿では,Deepfake検出のための微妙な操作アーチファクトを異なるスケールで捉えることを目的とする。
最先端の顔スワッピングと顔の再現方法によって生成された4000のDeepFakeビデオで構成される高品質のDeepFakeデータセットSR-DFを紹介します。
論文 参考訳(メタデータ) (2021-04-20T05:43:44Z) - Fighting Deepfake by Exposing the Convolutional Traces on Images [0.0]
FACEAPPのようなモバイルアプリは、最も高度なGAN(Generative Adversarial Networks)を使用して、人間の顔写真に極端な変換を生成する。
この種のメディアオブジェクトはDeepfakeという名前を取って、マルチメディアの法医学分野における新たな課題であるDeepfake検出課題を提起した。
本稿では,画像からディープフェイク指紋を抽出する手法を提案する。
論文 参考訳(メタデータ) (2020-08-07T08:49:23Z) - DeepFake Detection by Analyzing Convolutional Traces [0.0]
我々は,人間の顔のディープフェイクの分析に着目し,新しい検出方法を提案する。
提案手法は, 予測最大化(EM)アルゴリズムを用いて, 基礎となる畳み込み生成過程をモデル化するための局所的特徴の集合を抽出する。
その結果、異なるアーキテクチャと対応する生成過程を区別する手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-22T09:02:55Z) - Leveraging Frequency Analysis for Deep Fake Image Recognition [35.1862941141084]
ディープニューラルネットワークは驚くべきほどリアルな画像を生成することができるため、人間が実際の写真と区別するのはしばしば困難である。
これらの成果は主にGAN(Generative Adversarial Networks)によって実現されている。
本稿では、周波数空間において、GAN生成した画像は、容易に識別できる重いアーティファクトを示すことを示す。
論文 参考訳(メタデータ) (2020-03-19T11:06:54Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
顔表情の合成と認識を効果的に行うための新しい統合深層学習法を提案する。
提案手法は, 2段階の学習手順を伴い, まず, 表情の異なる顔画像を生成するために, 表情合成生成対向ネットワーク (FESGAN) を事前訓練する。
実画像と合成画像間のデータバイアスの問題を軽減するために,新しい実データ誘導バックプロパゲーション(RDBP)アルゴリズムを用いたクラス内損失を提案する。
論文 参考訳(メタデータ) (2020-02-06T10:56:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。