A Joint Representation Learning and Feature Modeling Approach for
One-class Recognition
- URL: http://arxiv.org/abs/2101.09782v1
- Date: Sun, 24 Jan 2021 19:51:46 GMT
- Title: A Joint Representation Learning and Feature Modeling Approach for
One-class Recognition
- Authors: Pramuditha Perera, Vishal Patel
- Abstract summary: We argue that both of these approaches have their own limitations; and a more effective solution can be obtained by combining the two.
The proposed approach is based on the combination of a generative framework and a one-class classification method.
We test the effectiveness of the proposed method on three one-class classification tasks and obtain state-of-the-art results.
- Score: 15.606362608483316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One-class recognition is traditionally approached either as a representation
learning problem or a feature modeling problem. In this work, we argue that
both of these approaches have their own limitations; and a more effective
solution can be obtained by combining the two. The proposed approach is based
on the combination of a generative framework and a one-class classification
method. First, we learn generative features using the one-class data with a
generative framework. We augment the learned features with the corresponding
reconstruction errors to obtain augmented features. Then, we qualitatively
identify a suitable feature distribution that reduces the redundancy in the
chosen classifier space. Finally, we force the augmented features to take the
form of this distribution using an adversarial framework. We test the
effectiveness of the proposed method on three one-class classification tasks
and obtain state-of-the-art results.
Related papers
- Hierarchical Ensemble-Based Feature Selection for Time Series Forecasting [0.0]
We introduce a novel ensemble approach for feature selection based on hierarchical stacking for non-stationarity.
Our approach exploits the co-dependency between features using a hierarchical structure.
The effectiveness of the approach is demonstrated on synthetic and well-known real-life datasets.
arXiv Detail & Related papers (2023-10-26T16:40:09Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
One-class classification refers to approaches of learning using data from a single class only.
We propose a deep learning one-class classification method suitable for multimodal data.
arXiv Detail & Related papers (2023-09-25T12:31:18Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - CAD: Co-Adapting Discriminative Features for Improved Few-Shot
Classification [11.894289991529496]
Few-shot classification is a challenging problem that aims to learn a model that can adapt to unseen classes given a few labeled samples.
Recent approaches pre-train a feature extractor, and then fine-tune for episodic meta-learning.
We propose a strategy to cross-attend and re-weight discriminative features for few-shot classification.
arXiv Detail & Related papers (2022-03-25T06:14:51Z) - A Similarity-based Framework for Classification Task [21.182406977328267]
Similarity-based method gives rise to a new class of methods for multi-label learning and also achieves promising performance.
We unite similarity-based learning and generalized linear models to achieve the best of both worlds.
arXiv Detail & Related papers (2022-03-05T06:39:50Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
We present a method for neural network interpretability by combining feature attribution with counterfactual explanations.
We show that this method can be used to quantitatively evaluate the performance of feature attribution methods in an objective manner.
arXiv Detail & Related papers (2021-09-28T00:53:34Z) - Concurrent Discrimination and Alignment for Self-Supervised Feature
Learning [52.213140525321165]
Existing self-supervised learning methods learn by means of pretext tasks which are either (1) discriminating that explicitly specify which features should be separated or (2) aligning that precisely indicate which features should be closed together.
In this work, we combine the positive aspects of the discriminating and aligning methods, and design a hybrid method that addresses the above issue.
Our method explicitly specifies the repulsion and attraction mechanism respectively by discriminative predictive task and concurrently maximizing mutual information between paired views.
Our experiments on nine established benchmarks show that the proposed model consistently outperforms the existing state-of-the-art results of self-supervised and transfer
arXiv Detail & Related papers (2021-08-19T09:07:41Z) - Learning the Precise Feature for Cluster Assignment [39.320210567860485]
We propose a framework which integrates representation learning and clustering into a single pipeline for the first time.
The proposed framework exploits the powerful ability of recently developed generative models for learning intrinsic features.
Experimental results show that the performance of the proposed method is superior, or at least comparable to, the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-11T04:08:54Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
We present a two-stage framework for deep one-class classification.
We first learn self-supervised representations from one-class data, and then build one-class classifiers on learned representations.
In experiments, we demonstrate state-of-the-art performance on visual domain one-class classification benchmarks.
arXiv Detail & Related papers (2020-11-04T23:33:41Z) - Saliency-driven Class Impressions for Feature Visualization of Deep
Neural Networks [55.11806035788036]
It is advantageous to visualize the features considered to be essential for classification.
Existing visualization methods develop high confidence images consisting of both background and foreground features.
In this work, we propose a saliency-driven approach to visualize discriminative features that are considered most important for a given task.
arXiv Detail & Related papers (2020-07-31T06:11:06Z) - Two-Level Adversarial Visual-Semantic Coupling for Generalized Zero-shot
Learning [21.89909688056478]
We propose a new two-level joint idea to augment the generative network with an inference network during training.
This provides strong cross-modal interaction for effective transfer of knowledge between visual and semantic domains.
We evaluate our approach on four benchmark datasets against several state-of-the-art methods, and show its performance.
arXiv Detail & Related papers (2020-07-15T15:34:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.