Linking the Dynamics of User Stance to the Structure of Online
Discussions
- URL: http://arxiv.org/abs/2101.09852v2
- Date: Sat, 27 Feb 2021 23:59:34 GMT
- Title: Linking the Dynamics of User Stance to the Structure of Online
Discussions
- Authors: Christine Largeron, Andrei Mardale, Marian-Andrei Rizoiu
- Abstract summary: We investigate whether users' stance concerning contentious subjects is influenced by the online discussions they are exposed to.
We set up a series of predictive exercises based on machine learning models.
We find that the most informative features relate to the stance composition of the discussion in which users prefer to engage.
- Score: 6.853826783413853
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper studies the dynamics of opinion formation and polarization in
social media. We investigate whether users' stance concerning contentious
subjects is influenced by the online discussions they are exposed to and
interactions with users supporting different stances. We set up a series of
predictive exercises based on machine learning models. Users are described
using several posting activities features capturing their overall activity
levels, posting success, the reactions their posts attract from users of
different stances, and the types of discussions in which they engage. Given the
user description at present, the purpose is to predict their stance in the
future. Using a dataset of Brexit discussions on the Reddit platform, we show
that the activity features regularly outperform the textual baseline,
confirming the link between exposure to discussion and opinion. We find that
the most informative features relate to the stance composition of the
discussion in which users prefer to engage.
Related papers
- Personalized Topic Selection Model for Topic-Grounded Dialogue [24.74527189182273]
Current models tend to predict user-uninteresting and contextually irrelevant topics.
We propose a textbfPersonalized topic stextbfElection model for textbfTopic-grounded textbfDialogue, named textbfPETD.
Our proposed method can generate engaging and diverse responses, outperforming state-of-the-art baselines.
arXiv Detail & Related papers (2024-06-04T06:09:49Z) - Inside the echo chamber: Linguistic underpinnings of misinformation on Twitter [4.62503518282081]
Social media users drive the spread of misinformation online by sharing posts that include erroneous information or commenting on controversial topics.
This work explores how conversations around misinformation are mediated through language use.
arXiv Detail & Related papers (2024-04-24T15:37:12Z) - Fostering User Engagement in the Critical Reflection of Arguments [3.26297440422721]
We propose a system that engages in a deliberative dialogue with a human.
We enable the system to intervene if the user is too focused on their pre-existing opinion.
We report on a user study with 58 participants to test our model and the effect of the intervention mechanism.
arXiv Detail & Related papers (2023-08-17T15:48:23Z) - Thread With Caution: Proactively Helping Users Assess and Deescalate
Tension in Their Online Discussions [13.455968033357065]
Incivility remains a major challenge for online discussion platforms.
Traditionally, platforms have relied on moderators to -- with or without algorithmic assistance -- take corrective actions such as removing comments or banning users.
We propose a complementary paradigm that directly empowers users by proactively enhancing their awareness about existing tension in the conversation they are engaging in.
arXiv Detail & Related papers (2022-12-02T19:00:03Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Understanding How People Rate Their Conversations [73.17730062864314]
We conduct a study to better understand how people rate their interactions with conversational agents.
We focus on agreeableness and extraversion as variables that may explain variation in ratings.
arXiv Detail & Related papers (2022-06-01T00:45:32Z) - Interacting with Non-Cooperative User: A New Paradigm for Proactive
Dialogue Policy [83.61404191470126]
We propose a new solution named I-Pro that can learn Proactive policy in the Interactive setting.
Specifically, we learn the trade-off via a learned goal weight, which consists of four factors.
The experimental results demonstrate I-Pro significantly outperforms baselines in terms of effectiveness and interpretability.
arXiv Detail & Related papers (2022-04-07T14:11:31Z) - News consumption and social media regulations policy [70.31753171707005]
We analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation.
Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content.
The lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior.
arXiv Detail & Related papers (2021-06-07T19:26:32Z) - Who Responded to Whom: The Joint Effects of Latent Topics and Discourse
in Conversation Structure [53.77234444565652]
We identify the responding relations in the conversation discourse, which link response utterances to their initiations.
We propose a model to learn latent topics and discourse in word distributions, and predict pairwise initiation-response links.
Experimental results on both English and Chinese conversations show that our model significantly outperforms the previous state of the arts.
arXiv Detail & Related papers (2021-04-17T17:46:00Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
We propose a personalized hybrid matching network (PHMN) for context-response matching.
Our contributions are two-fold: 1) our model extracts personalized wording behaviors from user-specific dialogue history as extra matching information.
We evaluate our model on two large datasets with user identification, i.e., personalized dialogue Corpus Ubuntu (P- Ubuntu) and personalized Weibo dataset (P-Weibo)
arXiv Detail & Related papers (2021-03-17T09:42:11Z) - Improving Cyberbully Detection with User Interaction [34.956581421295]
We propose a principled graph-based approach for modeling the temporal dynamics and topic coherence throughout user interactions.
We empirically evaluate the effectiveness of our approach with the tasks of session-level bullying detection and comment-level case study.
arXiv Detail & Related papers (2020-11-01T08:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.