Inside the echo chamber: Linguistic underpinnings of misinformation on Twitter
- URL: http://arxiv.org/abs/2404.15925v1
- Date: Wed, 24 Apr 2024 15:37:12 GMT
- Title: Inside the echo chamber: Linguistic underpinnings of misinformation on Twitter
- Authors: Xinyu Wang, Jiayi Li, Sarah Rajtmajer,
- Abstract summary: Social media users drive the spread of misinformation online by sharing posts that include erroneous information or commenting on controversial topics.
This work explores how conversations around misinformation are mediated through language use.
- Score: 4.62503518282081
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social media users drive the spread of misinformation online by sharing posts that include erroneous information or commenting on controversial topics with unsubstantiated arguments often in earnest. Work on echo chambers has suggested that users' perspectives are reinforced through repeated interactions with like-minded peers, promoted by homophily and bias in information diffusion. Building on long-standing interest in the social bases of language and linguistic underpinnings of social behavior, this work explores how conversations around misinformation are mediated through language use. We compare a number of linguistic measures, e.g., in-/out-group cues, readability, and discourse connectives, within and across topics of conversation and user communities. Our findings reveal increased presence of group identity signals and processing fluency within echo chambers during discussions of misinformation. We discuss the specific character of these broader trends across topics and examine contextual influences.
Related papers
- The Evolution of Language in Social Media Comments [37.69303106863453]
This study investigates the linguistic characteristics of user comments over 34 years, focusing on their complexity and temporal shifts.
We utilize a dataset of approximately 300 million English comments from eight diverse platforms and topics.
Our findings reveal consistent patterns of complexity across social media platforms and topics, characterized by a nearly universal reduction in text length, diminished lexical richness, but decreased repetitiveness.
arXiv Detail & Related papers (2024-06-17T12:03:30Z) - Echo-chambers and Idea Labs: Communication Styles on Twitter [51.13560635563004]
This paper investigates the communication styles and structures of Twitter (X) communities within the vaccination context.
By shedding light on the nuanced nature of communication within social networks, this study emphasizes the significance of understanding the diversity of perspectives within online communities.
arXiv Detail & Related papers (2024-03-28T13:55:51Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSyn is a context-synergized neural network that explicitly incorporates user- and conversational context for detecting implicit hate speech in online conversations.
We show that CoSyn outperforms all our baselines in detecting implicit hate speech with absolute improvements in the range of 1.24% - 57.8%.
arXiv Detail & Related papers (2023-03-02T17:30:43Z) - AI Chat Assistants can Improve Conversations about Divisive Topics [3.8583005413310625]
We present results of a large-scale experiment that demonstrates how online conversations can be improved with artificial intelligence tools.
We employ a large language model to make real-time, evidence-based recommendations intended to improve participants' perception of feeling understood in conversations.
We find that these interventions improve the reported quality of the conversation, reduce political divisiveness, and improve the tone, without systematically changing the content of the conversation or moving people's policy attitudes.
arXiv Detail & Related papers (2023-02-14T06:42:09Z) - Understanding How People Rate Their Conversations [73.17730062864314]
We conduct a study to better understand how people rate their interactions with conversational agents.
We focus on agreeableness and extraversion as variables that may explain variation in ratings.
arXiv Detail & Related papers (2022-06-01T00:45:32Z) - Linguistic Characterization of Divisive Topics Online: Case Studies on
Contentiousness in Abortion, Climate Change, and Gun Control [11.127421264715556]
divisive topics prompt both contentious and non-contentious conversations.
We focus on conversations from highly divisive topics (abortion, climate change, and gun control)
We operationalize a set of novel linguistic and conversational characteristics and user factors, and incorporate them to build interpretable models.
arXiv Detail & Related papers (2021-08-30T23:55:38Z) - News consumption and social media regulations policy [70.31753171707005]
We analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation.
Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content.
The lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior.
arXiv Detail & Related papers (2021-06-07T19:26:32Z) - Who Responded to Whom: The Joint Effects of Latent Topics and Discourse
in Conversation Structure [53.77234444565652]
We identify the responding relations in the conversation discourse, which link response utterances to their initiations.
We propose a model to learn latent topics and discourse in word distributions, and predict pairwise initiation-response links.
Experimental results on both English and Chinese conversations show that our model significantly outperforms the previous state of the arts.
arXiv Detail & Related papers (2021-04-17T17:46:00Z) - Analysing Social Media Network Data with R: Semi-Automated Screening of
Users, Comments and Communication Patterns [0.0]
Communication on social media platforms is increasingly widespread across societies.
Fake news, hate speech and radicalizing elements are part of this modern form of communication.
A basic understanding of these mechanisms and communication patterns could help to counteract negative forms of communication.
arXiv Detail & Related papers (2020-11-26T14:52:01Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
We introduce an operational definition of echo chambers and perform a massive comparative analysis on 1B pieces of contents produced by 1M users on four social media platforms.
We infer the leaning of users about controversial topics and reconstruct their interaction networks by analyzing different features.
We find support for the hypothesis that platforms implementing news feed algorithms like Facebook may elicit the emergence of echo-chambers.
arXiv Detail & Related papers (2020-04-20T20:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.