Nonreciprocal Transmission and Entanglement in a cavity-magnomechanical
system
- URL: http://arxiv.org/abs/2101.09931v1
- Date: Mon, 25 Jan 2021 07:41:40 GMT
- Title: Nonreciprocal Transmission and Entanglement in a cavity-magnomechanical
system
- Authors: Zhi-Bo Yang, Jin-Song Liu, Ai-Dong Zhu, Hong-Yu Liu, and Rong-Can Yang
- Abstract summary: Quantum entanglement is generated with a cavity-magnomechanical system.
By breaking symmetry of the configuration, we realize nonreciprocal photon transmission and one-way bipartite quantum entanglement.
- Score: 10.520692160489133
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum entanglement, a key element for quantum information is generated with
a cavity-magnomechanical system. It comprises of two microwave cavities, a
magnon mode and a vibrational mode, and the last two elements come from a YIG
sphere trapped in the second cavity. The two microwave cavities are connected
by a superconducting transmission line, resulting in a linear coupling between
them. The magnon mode is driven by a strong microwave field and coupled to
cavity photons via magnetic dipole interaction, and at the same time interacts
with phonons via magnetostrictive interaction. By breaking symmetry of the
configuration, we realize nonreciprocal photon transmission and one-way
bipartite quantum entanglement. By using current experimental parameters for
numerical simulation, it is hoped that our results may reveal a new strategy to
built quantum resources for the realization of noise-tolerant quantum
processors, chiral networks, and so on.
Related papers
- Dynamics and Resonance Fluorescence from a Superconducting Artificial Atom Doubly Driven by Quantized and Classical Fields [11.961708412157757]
Experimental demonstration of resonance fluorescence in a two-level superconducting artificial atom under two driving fields coupled to a detuned cavity.
The device consists of a transmon qubit strongly coupled to a one-dimensional transmission line and a coplanar waveguide resonator.
arXiv Detail & Related papers (2024-03-17T08:48:30Z) - Nonreciprocal entanglement in cavity magnomechanics exploiting chiral cavity-magnon coupling [8.13512137938837]
We show how to achieve nonreciprocal quantum entanglement in a cavity magnomechanical system.
The work may find promising applications in noise-tolerant quantum processing, channel multiplexing quantum teleportation, and chiral magnonic quantum networks.
arXiv Detail & Related papers (2024-01-04T13:58:01Z) - Macroscopic entanglement between ferrimagnetic magnons and atoms via
crossed optical cavity [5.151140055918105]
Two-dimensional opto-magnomechanical (OMM) system includes two optical cavity modes, a magnon mode, a phonon mode, and a collection of two-level atoms.
In this study, we demonstrate the methodology for generating stationary entanglement between two-level atoms and magnons.
arXiv Detail & Related papers (2023-12-19T05:26:03Z) - Engineering synthetic gauge fields through the coupling phases in cavity magnonics [0.06022769903412459]
cavity magnonics is a promising platform for quantum transducers and quantum memories.
In "loop-coupled" systems, where there are at least as many couplings as modes, the coupling phases become relevant for the physics.
We present experimental evidence of the existence of such coupling phases by considering two spheres made of Yttrium-Iron-Garnet and two different re-entrant cavities.
arXiv Detail & Related papers (2023-12-08T09:25:26Z) - Distant entanglement via photon hopping in a coupled magnomechanical
system [0.0]
We find significant bipartite entanglement between indirectly coupled subsystems in coupled microwave cavities.
A single photon hopping parameter significantly affects both the degree as well as the transfer of quantum entanglement between various bipartitions.
arXiv Detail & Related papers (2023-07-18T16:43:43Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.