論文の概要: Analysis of Relation between Motor Activity and Imaginary EEG Records
- arxiv url: http://arxiv.org/abs/2101.10215v1
- Date: Thu, 21 Jan 2021 05:02:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-21 21:52:49.084224
- Title: Analysis of Relation between Motor Activity and Imaginary EEG Records
- Title(参考訳): 運動活動と心電図記録との関連性の解析
- Authors: Enver Kaan Alpturk, Yakup Kutlu
- Abstract要約: 右または左拳の開閉時に109人の被験者から受信した脳波信号を使用します。
運動活動とその運動活動の想像の関係について検討した。
- 参考スコア(独自算出の注目度): 1.52292571922932
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electroencephalography (EEG) signals signals are often used to learn about
brain structure and to learn what thinking. EEG signals can be easily affected
by external factors. For this reason, they should be applied various
pre-process during their analysis. In this study, it is used the EEG signals
received from 109 subjects when opening and closing their right or left fists
and performing hand and foot movements and imagining the same movements. The
relationship between motor activities and imaginary of that motor activities
were investigated. Algorithms with high performance rates have been used for
feature extraction , selection and classification using the nearest neighbour
algorithm.
- Abstract(参考訳): 脳波(EEG)信号は脳の構造を学習し、何を考えているかを学ぶためにしばしば用いられる。
脳波信号は外部因子によって容易に影響を受ける。
そのため、分析中に様々な事前処理を適用する必要がある。
本研究では,左右の拳を開閉し,手足の動作を行い,同じ動きを想像する際に,被験者109名から受信した脳波信号を用いた。
運動活動とその運動活動の想像力の関係について検討した。
性能の高いアルゴリズムは、最も近い隣り合うアルゴリズムを用いて特徴抽出、選択、分類に使われている。
- 全文 参考訳へのリンク
関連論文リスト
- Spatio-Temporal Analysis of Transformer based Architecture for Attention
Estimation from EEG [2.7076510056452654]
脳波信号から特定のタスクに与えられた注意状態、すなわち注意度を復元できる新しいフレームワークを提案する。
従来は電極による脳波の空間的関係をよく検討していたが, トランスフォーマネットワークを用いた空間的・時間的情報の利用も提案する。
提案したネットワークは、2つの公開データセットでトレーニングされ、検証され、最先端のモデルよりも高い結果が得られる。
論文 参考訳(メタデータ) (2022-04-04T08:05:33Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
我々はDriPPと呼ばれる新しい統計点過程モデルを開発する。
我々は、このモデルのパラメータを推定するために、高速で原理化された予測最大化(EM)アルゴリズムを導出する。
標準MEGデータセットの結果から,我々の手法が事象関連ニューラルレスポンスを明らかにすることが示された。
論文 参考訳(メタデータ) (2021-12-08T13:07:21Z) - EEGminer: Discovering Interpretable Features of Brain Activity with
Learnable Filters [72.19032452642728]
本稿では,学習可能なフィルタと事前決定された特徴抽出モジュールからなる新しい識別可能なEEGデコーディングパイプラインを提案する。
我々は,SEEDデータセットおよび前例のない大きさの新たな脳波データセット上で,脳波信号からの感情認識に向けたモデルの有用性を実証する。
発見された特徴は、以前の神経科学の研究と一致し、音楽聴取中の左右の時間領域間の機能的接続プロファイルの顕著な相違など、新たな洞察を提供する。
論文 参考訳(メタデータ) (2021-10-19T14:22:04Z) - Electroencephalogram Signal Processing with Independent Component
Analysis and Cognitive Stress Classification using Convolutional Neural
Networks [0.0]
本稿では,独立成分分析(ICA)を用いた脳波信号の相互相関について提案する。
記録データの結果から,脳波データの損失が少なくてEOG信号アーチファクトを除去できることが示唆された。
論文 参考訳(メタデータ) (2021-08-22T18:38:12Z) - Classification of Upper Arm Movements from EEG signals using Machine
Learning with ICA Analysis [0.0]
本稿では,多層パーセプトロンニューラルネットワークを用いて,左右の動作を識別する独自のアルゴリズムを提案する。
不要信号の干渉は、アルゴリズムの性能に影響を与える脳波信号を汚染する。
論文 参考訳(メタデータ) (2021-07-18T18:56:28Z) - Continuous Decoding of Daily-Life Hand Movements from Forearm Muscle
Activity for Enhanced Myoelectric Control of Hand Prostheses [78.120734120667]
本研究では,前腕のEMG活性をハンドキネマティクスに連続的にマップする,長期記憶(LSTM)ネットワークに基づく新しい手法を提案する。
私たちの研究は、この困難なデータセットを使用するハンドキネマティクスの予測に関する最初の報告です。
提案手法は, 人工手指の複数のDOFの独立的, 比例的アクティベーションのための制御信号の生成に適していることが示唆された。
論文 参考訳(メタデータ) (2021-04-29T00:11:32Z) - Signal Processing and Machine Learning Techniques for Terahertz Sensing:
An Overview [89.09270073549182]
テラヘルツ(THz)信号生成と放射法は、無線システムの未来を形作っている。
THz 固有の信号処理技術は、THz 帯域の効率的な利用のために、この THz センシングへの関心を補う必要がある。
本稿では,信号前処理に着目した手法の概要を示す。
また,THz帯で有望な知覚能力を探索し,深層学習の有効性についても検討した。
論文 参考訳(メタデータ) (2021-04-09T01:38:34Z) - Decoding Event-related Potential from Ear-EEG Signals based on Ensemble
Convolutional Neural Networks in Ambulatory Environment [25.21795777074951]
歩行環境におけるアンサンブル型畳み込みニューラルネットワークを提案し,頭皮と耳の視覚事象関連電位応答の解析を行った。
脳-コンピュータインタフェースの性能は1.6m/sで速く歩くと3-14%低下した。
提案手法は観測環境や不均衡データにも頑健であることを示す。
論文 参考訳(メタデータ) (2021-03-03T06:04:59Z) - Dynamic Graph Modeling of Simultaneous EEG and Eye-tracking Data for
Reading Task Identification [79.41619843969347]
我々は、脳波(EEG)と眼球運動(EM)データからヒトの読取意図を特定するための新しいアプローチAdaGTCNを提案する。
本稿では,AdaGTCN(Adaptive Graph Temporal Convolution Network)の手法として,Adaptive Graph Learning LayerとDeep Neighborhood Graph Convolution Layerを用いた。
このアプローチといくつかのベースラインを比較し、ZuCo 2.0データセットの6.29%の改善と広範なアブレーション実験を報告します。
論文 参考訳(メタデータ) (2021-02-21T18:19:49Z) - Decoding EEG Brain Activity for Multi-Modal Natural Language Processing [9.35961671939495]
自然言語処理タスクを改善するために脳波脳活動データの可能性を体系的に分析する最初の大規模研究を行った。
脳波信号を周波数帯域にフィルタリングすることはブロードバンド信号よりも有益であることがわかった。
単語埋め込みタイプの範囲のために、EEGデータは二分および三分感情の分類を改善し、複数のベースラインを上回ります。
論文 参考訳(メタデータ) (2021-02-17T09:44:21Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
CNNと脳のつながりを利用した新しい分類システムを導入し,その効果を感情映像分類により検証する。
対象映像の感情的特性に関連する脳接続の集中度は分類性能と相関する。
論文 参考訳(メタデータ) (2021-01-18T13:28:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。