Discrete Choice Analysis with Machine Learning Capabilities
- URL: http://arxiv.org/abs/2101.10261v1
- Date: Thu, 21 Jan 2021 21:34:43 GMT
- Title: Discrete Choice Analysis with Machine Learning Capabilities
- Authors: Youssef M. Aboutaleb, Mazen Danaf, Yifei Xie, Moshe Ben-Akiva
- Abstract summary: This paper discusses capabilities that are essential to models applied in policy analysis settings.
We identify an area where machine learning paradigms can be leveraged, namely in specifying and systematically selecting the best specification of the random component of the utility equations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper discusses capabilities that are essential to models applied in
policy analysis settings and the limitations of direct applications of
off-the-shelf machine learning methodologies to such settings. Traditional
econometric methodologies for building discrete choice models for policy
analysis involve combining data with modeling assumptions guided by
subject-matter considerations. Such considerations are typically most useful in
specifying the systematic component of random utility discrete choice models
but are typically of limited aid in determining the form of the random
component. We identify an area where machine learning paradigms can be
leveraged, namely in specifying and systematically selecting the best
specification of the random component of the utility equations. We review two
recent novel applications where mixed-integer optimization and cross-validation
are used to algorithmically select optimal specifications for the random
utility components of nested logit and logit mixture models subject to
interpretability constraints.
Related papers
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - A tutorial on learning from preferences and choices with Gaussian Processes [0.7234862895932991]
This tutorial builds upon established research while introducing some novel GP-based models to address specific gaps in the existing literature.
This framework enables the construction of preference learning models that encompass random utility models, limits of discernment, and scenarios with multiple conflicting utilities for both object- and label-preference.
arXiv Detail & Related papers (2024-03-18T13:40:48Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system.
Existing methods mainly focus on selecting explanatory input features, which follow either locally additive or instance-wise approaches.
This work exploits the strengths of both methods and proposes a global framework for learning local explanations simultaneously for multiple target classes.
arXiv Detail & Related papers (2022-07-07T06:50:27Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
Decision making algorithms are used in a multitude of different applications.
Deep learning approaches that use highly parametric architectures tuned from data without relying on mathematical models are becoming increasingly popular.
Model-based optimization and data-centric deep learning are often considered to be distinct disciplines.
arXiv Detail & Related papers (2022-05-05T13:40:08Z) - Gaussian Process Latent Class Choice Models [7.992550355579791]
We present a non-parametric class of probabilistic machine learning within discrete choice models (DCMs)
The proposed model would assign individuals probabilistically to behaviorally homogeneous clusters (latent classes) using GPs.
The model is tested on two different mode choice applications and compared against different LCCM benchmarks.
arXiv Detail & Related papers (2021-01-28T19:56:42Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z) - Automatic selection of basis-adaptive sparse polynomial chaos expansions
for engineering applications [0.0]
We describe three state-of-the-art basis-adaptive approaches for sparse chaos expansions.
We conduct an extensive benchmark in terms of global approximation accuracy on a large set of computational models.
We introduce a novel solver and basis adaptivity selection scheme guided by cross-validation error.
arXiv Detail & Related papers (2020-09-10T12:13:57Z) - Semi-nonparametric Latent Class Choice Model with a Flexible Class
Membership Component: A Mixture Model Approach [6.509758931804479]
The proposed model formulates the latent classes using mixture models as an alternative approach to the traditional random utility specification.
Results show that mixture models improve the overall performance of latent class choice models.
arXiv Detail & Related papers (2020-07-06T13:19:26Z) - Sparse Methods for Automatic Relevance Determination [0.0]
We first review automatic relevance determination (ARD) and analytically demonstrate the need to additional regularization or thresholding to achieve sparse models.
We then discuss two classes of methods, regularization based and thresholding based, which build on ARD to learn parsimonious solutions to linear problems.
arXiv Detail & Related papers (2020-05-18T14:08:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.