An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting
- URL: http://arxiv.org/abs/2409.02760v1
- Date: Wed, 4 Sep 2024 14:36:20 GMT
- Title: An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting
- Authors: Zhuolin Li, Zhen Zhang, Witold Pedrycz,
- Abstract summary: We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
- Score: 53.36437745983783
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a novel incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting (MCS) problems, enabling decision makers to progressively provide assignment example preference information. Specifically, we first construct a max-margin optimization-based model to model potentially non-monotonic preferences and inconsistent assignment example preference information in each iteration of the incremental preference elicitation process. Using the optimal objective function value of the max-margin optimization-based model, we devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration within the framework of uncertainty sampling in active learning. Once the termination criterion is satisfied, the sorting result for non-reference alternatives can be determined through the use of two optimization models, i.e., the max-margin optimization-based model and the complexity controlling optimization model. Subsequently, two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences, considering different termination criteria. Ultimately, we apply the proposed approach to a credit rating problem to elucidate the detailed implementation steps, and perform computational experiments on both artificial and real-world data sets to compare the proposed question selection strategies with several benchmark strategies.
Related papers
- Preference Optimization as Probabilistic Inference [21.95277469346728]
We propose a method that can leverage unpaired preferred or dis-preferred examples, and works even when only one type of feedback is available.
This flexibility allows us to apply it in scenarios with varying forms of feedback and models, including training generative language models.
arXiv Detail & Related papers (2024-10-05T14:04:03Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - A new fuzzy multi-attribute group decision-making method based on TOPSIS
and optimization models [3.697049647195136]
A new method is proposed for multi-attribute group decision-making in interval-valued intuitionistic fuzzy sets.
By minimizing the sum of differences between individual evaluations and the overallconsistent evaluations of all experts, a new optimization model is established for determining expert weights.
The complete fuzzy multi-attribute group decision-making algorithm is formulated, which can give full play to the advantages of subjective and objective weighting methods.
arXiv Detail & Related papers (2023-11-27T15:41:30Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then- framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This approach can be inefficient and requires handcrafted, problem-specific rules for backpropagation through the optimization step.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by predictive models.
arXiv Detail & Related papers (2023-11-22T01:32:06Z) - Contextual Stochastic Bilevel Optimization [50.36775806399861]
We introduce contextual bilevel optimization (CSBO) -- a bilevel optimization framework with the lower-level problem minimizing an expectation on some contextual information and the upper-level variable.
It is important for applications such as meta-learning, personalized learning, end-to-end learning, and Wasserstein distributionally robustly optimization with side information (WDRO-SI)
arXiv Detail & Related papers (2023-10-27T23:24:37Z) - Adaptive Neural Ranking Framework: Toward Maximized Business Goal for
Cascade Ranking Systems [33.46891569350896]
Cascade ranking is widely used for large-scale top-k selection problems in online advertising and recommendation systems.
Previous works on learning-to-rank usually focus on letting the model learn the complete order or top-k order.
We name this method as Adaptive Neural Ranking Framework (abbreviated as ARF)
arXiv Detail & Related papers (2023-10-16T14:43:02Z) - Bilevel Optimization for Feature Selection in the Data-Driven Newsvendor
Problem [8.281391209717105]
We study the feature-based news vendor problem, in which a decision-maker has access to historical data.
In this setting, we investigate feature selection, aiming to derive sparse, explainable models with improved out-of-sample performance.
We present a mixed integer linear program reformulation for the bilevel program, which can be solved to optimality with standard optimization solvers.
arXiv Detail & Related papers (2022-09-12T08:52:26Z) - A unified surrogate-based scheme for black-box and preference-based
optimization [2.561649173827544]
We show that black-box and preference-based optimization problems are closely related and can be solved using the same family of approaches.
We propose the generalized Metric Response Surface (gMRS) algorithm, an optimization scheme that is a generalization of the popular MSRS framework.
arXiv Detail & Related papers (2022-02-03T08:47:54Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
We study the predict-then-optimize framework in the context of sequential decision problems (formulated as MDPs) solved via reinforcement learning.
Two significant computational challenges arise in applying decision-focused learning to MDPs.
arXiv Detail & Related papers (2021-06-06T23:53:31Z) - Learning to Select Base Classes for Few-shot Classification [96.92372639495551]
We use the Similarity Ratio as an indicator for the generalization performance of a few-shot model.
We then formulate the base class selection problem as a submodular optimization problem over Similarity Ratio.
arXiv Detail & Related papers (2020-04-01T09:55:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.