論文の概要: Superiorities of Deep Extreme Learning Machines against Convolutional
Neural Networks
- arxiv url: http://arxiv.org/abs/2101.10265v1
- Date: Thu, 21 Jan 2021 08:22:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-21 17:46:09.769327
- Title: Superiorities of Deep Extreme Learning Machines against Convolutional
Neural Networks
- Title(参考訳): 畳み込みニューラルネットワークに対する深層学習マシンの優位性
- Authors: Gokhan Altan, Yakup Kutlu
- Abstract要約: deep learning (dl)は、入力データを詳細に分析する人工知能のための機械学習手順である。
DLはグラフィカル処理ユニット機能の一般的な改善で人気がある。
Deep Extreme Learning Machine(Deep ELM)は、迅速な分類問題を解決するための最速かつ効果的な方法の1つです。
- 参考スコア(独自算出の注目度): 3.04585143845864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Learning (DL) is a machine learning procedure for artificial
intelligence that analyzes the input data in detail by increasing neuron sizes
and number of the hidden layers. DL has a popularity with the common
improvements on the graphical processing unit capabilities. Increasing number
of the neuron sizes at each layer and hidden layers is directly related to the
computation time and training speed of the classifier models. The
classification parameters including neuron weights, output weights, and biases
need to be optimized for obtaining an optimum model. Most of the popular DL
algorithms require long training times for optimization of the parameters with
feature learning progresses and back-propagated training procedures. Reducing
the training time and providing a real-time decision system are the basic focus
points of the novel approaches. Deep Extreme Learning machines (Deep ELM)
classifier model is one of the fastest and effective way to meet fast
classification problems. In this study, Deep ELM model, its superiorities and
weaknesses are discussed, the problems that are more suitable for the
classifiers against Convolutional neural network based DL algorithms.
- Abstract(参考訳): Deep Learning(DL)は、ニューラルネットワークのサイズと隠されたレイヤの数を増やすことで、入力データを詳細に分析する人工知能のための機械学習手順である。
DLはグラフィカル処理ユニット機能の一般的な改善で人気がある。
各層および隠れ層におけるニューロンサイズの増加は、分類器モデルの計算時間および訓練速度に直接関係している。
ニューロンの重み、出力の重み、バイアスを含む分類パラメータを最適化して最適なモデルを得る必要がある。
一般的なdlアルゴリズムの多くは、特徴学習の進歩とバックプロシージャを持つパラメータの最適化に長い訓練時間を必要とする。
トレーニング時間を短縮し、リアルタイムな意思決定システムを提供することが、新しいアプローチの基本的焦点である。
ディープ・エクストリーム・ラーニング・マシン(deep extreme learning machines、ディープ・エルム)分類モデルは、高速な分類問題を解決する最も速く効果的な方法の1つである。
本研究では,畳み込みニューラルネットワークに基づくdlアルゴリズムに対する分類器に適合する問題である,深層elmモデルとその優位性と弱点について論じる。
関連論文リスト
- Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
本稿では,重み空間学習におけるSANEアプローチを紹介する。
ニューラルネットワーク重みのサブセットの逐次処理に向けて,超表現の概念を拡張した。
論文 参考訳(メタデータ) (2024-06-14T13:12:07Z) - SA-CNN: Application to text categorization issues using simulated
annealing-based convolutional neural network optimization [0.0]
畳み込みニューラルネットワーク(CNN)は、ディープラーニングアルゴリズムの代表クラスである。
テキストCNNニューラルネットワークに基づくテキスト分類タスクのためのSA-CNNニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-03-13T14:27:34Z) - HARL: Hierarchical Adaptive Reinforcement Learning Based Auto Scheduler
for Neural Networks [51.71682428015139]
効率的なテンソルプログラム探索のための強化学習に基づく自動スケジューリングシステムであるHARLを提案する。
HarLは、最先端のオートスケジューラと比較して、テンソル演算子の性能を22%改善し、探索速度を4.3倍改善する。
また、エンドツーエンドのニューラルネットワークでは、推論性能と探索速度も大幅に向上する。
論文 参考訳(メタデータ) (2022-11-21T04:15:27Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Desire Backpropagation: A Lightweight Training Algorithm for Multi-Layer
Spiking Neural Networks based on Spike-Timing-Dependent Plasticity [13.384228628766236]
スパイキングニューラルネットワーク(SNN)は、従来の人工ニューラルネットワークの代替となる。
本研究は,隠されたニューロンを含むすべてのニューロンの所望のスパイク活性を導出する方法である欲求バックプロパゲーションを提示する。
我々はMNISTとFashion-MNISTを分類するために3層ネットワークを訓練し、それぞれ98.41%と87.56%の精度に達した。
論文 参考訳(メタデータ) (2022-11-10T08:32:13Z) - EvoPruneDeepTL: An Evolutionary Pruning Model for Transfer Learning
based Deep Neural Networks [15.29595828816055]
本稿では,トランスファーラーニングに基づくディープニューラルネットワークのための進化的プルーニングモデルを提案する。
EvoPruneDeepTLは、最後の完全に接続されたレイヤを遺伝的アルゴリズムによって最適化されたスパースレイヤで置き換える。
その結果,ネットワーク全体の計算効率に対するEvoPruneDeepTLと特徴選択の寄与が示された。
論文 参考訳(メタデータ) (2022-02-08T13:07:55Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
訓練可能なパラメータが制限された小さなニューラルネットワークは、多くの単純なタスクに対してリソース効率の高い候補となる。
学習過程において隠れた層内のニューロンの多様性を探索する。
ニューロンの多様性がモデルの予測にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2021-09-20T15:12:16Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Training Deep Neural Networks with Constrained Learning Parameters [4.917317902787792]
ディープラーニングタスクのかなりの部分はエッジコンピューティングシステムで実行される。
我々は, Combinatorial Neural Network Training Algorithm (CNNTrA)を提案する。
CoNNTrAは、MNIST、Iris、ImageNetデータセット上で、第三次学習パラメータでディープラーニングモデルをトレーニングする。
以上の結果から,CNNTrAモデルはメモリを32倍に削減し,バックプロパゲーションモデルと同程度の誤差を有することがわかった。
論文 参考訳(メタデータ) (2020-09-01T16:20:11Z) - Optimizing Memory Placement using Evolutionary Graph Reinforcement
Learning [56.83172249278467]
大規模検索空間を対象とした進化グラフ強化学習(EGRL)を提案する。
我々は、推論のために、Intel NNP-Iチップ上で、我々のアプローチを直接訓練し、検証する。
また,NNP-Iコンパイラと比較して28~78%の高速化を実現している。
論文 参考訳(メタデータ) (2020-07-14T18:50:12Z) - Gradient-only line searches to automatically determine learning rates
for a variety of stochastic training algorithms [0.0]
Inexact (GOLS-I) である Gradient-Only Line Search を用いて、ニューラルネットワークトレーニングアルゴリズムの選択のための学習率スケジュールを決定する。
GOLS-Iの学習率スケジュールは、手動で調整された学習率、最適化アルゴリズム7以上、ニューラルネットワークアーキテクチャ3タイプ、データセット23、損失関数2つと競合する。
論文 参考訳(メタデータ) (2020-06-29T08:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。