論文の概要: Accumulating Risk Capital Through Investing in Cooperation
- arxiv url: http://arxiv.org/abs/2101.10305v1
- Date: Mon, 25 Jan 2021 18:41:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-14 19:01:51.971097
- Title: Accumulating Risk Capital Through Investing in Cooperation
- Title(参考訳): 協力投資によるリスク資本の蓄積
- Authors: Charlotte Roman, Michael Dennis, Andrew Critch, Stuart Russell
- Abstract要約: 安全と協力のトレードオフは厳しいものではなく、少ないリスクから協力することで指数関数的に大きな利益を得ることができることを示す。
協力投資によるリスク資本の蓄積(ARCTIC)を目標とした教育方針の策定方法を提案する。
- 参考スコア(独自算出の注目度): 12.053132866404972
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work on promoting cooperation in multi-agent learning has resulted in
many methods which successfully promote cooperation at the cost of becoming
more vulnerable to exploitation by malicious actors. We show that this is an
unavoidable trade-off and propose an objective which balances these concerns,
promoting both safety and long-term cooperation. Moreover, the trade-off
between safety and cooperation is not severe, and you can receive exponentially
large returns through cooperation from a small amount of risk. We study both an
exact solution method and propose a method for training policies that targets
this objective, Accumulating Risk Capital Through Investing in Cooperation
(ARCTIC), and evaluate them in iterated Prisoner's Dilemma and Stag Hunt.
- Abstract(参考訳): マルチエージェント学習における協力を促進する最近の取り組みは、悪意のあるアクターによる搾取に対してより脆弱になるコストで協力を促進する多くの方法をもたらしました。
これは避けられないトレードオフであり、これらの懸念をバランスさせ、安全と長期協力の両立を促進する目標を提案する。
さらに、安全と協力のトレードオフは深刻ではなく、少量のリスクから協力することで指数関数的に大きな利益を得ることができる。
本研究は,厳密な解決方法と,この目標を目標とする政策の訓練方法,Arccumulating Risk Capital Through Investing in Cooperation (ARCTIC) について検討し,これらを反復した囚人のジレンマとスタッグハントで評価する。
関連論文リスト
- CaPo: Cooperative Plan Optimization for Efficient Embodied Multi-Agent Cooperation [98.11670473661587]
CaPoは,1)メタプラン生成,2)プログレッシブなメタプランと実行の2つのフェーズで協調効率を向上する。
3Dworld Multi-Agent TransportとCommunicative Watch-And-Helpタスクの実験結果は、CaPoが最先端技術と比較してタスク完了率と効率をはるかに高めることを示した。
論文 参考訳(メタデータ) (2024-11-07T13:08:04Z) - Multi-agent cooperation through learning-aware policy gradients [53.63948041506278]
利己的な個人はしばしば協力に失敗し、マルチエージェント学習の根本的な課題を提起する。
本稿では,学習型強化学習のための,偏見のない高導出性ポリシー勾配アルゴリズムを提案する。
我々は, 受刑者のジレンマから, 自己関心のある学習エージェントの間でどのように, いつ, 協力関係が生じるかの新たな説明を得た。
論文 参考訳(メタデータ) (2024-10-24T10:48:42Z) - Cognitive Insights and Stable Coalition Matching for Fostering Multi-Agent Cooperation [6.536780912510439]
本稿では,ToMレベルの異なるエージェントの強度を利用する新しい連立機構を提案する。
我々の研究は、ToMを活用して、より高度で人間らしいコーディネーション戦略を構築する可能性を実証しています。
論文 参考訳(メタデータ) (2024-05-28T10:59:33Z) - Emergent Cooperation under Uncertain Incentive Alignment [7.906156032228933]
頻繁な出会いを特徴とするシナリオにおける強化学習エージェント間の協力関係について検討する。
本研究では,複合モチベーション環境における協調を促進するために文献で提案されている評価や本質的な報酬などのメカニズムの効果について検討する。
論文 参考訳(メタデータ) (2024-01-23T10:55:54Z) - Safeguarded Progress in Reinforcement Learning: Safe Bayesian
Exploration for Control Policy Synthesis [63.532413807686524]
本稿では、強化学習(RL)におけるトレーニング中の安全維持の問題に対処する。
探索中の効率的な進捗と安全性のトレードオフを扱う新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-12-18T16:09:43Z) - A Hierarchical Approach to Population Training for Human-AI
Collaboration [20.860808795671343]
階層型強化学習(HRL)に基づくヒューマンAIコラボレーション手法を提案する。
本手法は,2人のプレイヤーによるオーバークッキングゲーム環境において,異なるプレイスタイルとスキルレベルを持つ新しいパートナに動的に適応できることを実証する。
論文 参考訳(メタデータ) (2023-05-26T07:53:12Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
本稿では,MARL(Multi-Agent Reinforcement Learning)に対する新しいアプローチを提案する。
これは、協調的なタスク分解と、サブタスクの構造をコードする報酬機(RM)の学習を組み合わせる。
提案手法は、部分的に観測可能な環境下での報酬の非マルコフ的性質に対処するのに役立つ。
論文 参考訳(メタデータ) (2023-03-24T15:12:28Z) - Adaptive Value Decomposition with Greedy Marginal Contribution
Computation for Cooperative Multi-Agent Reinforcement Learning [48.41925886860991]
現実世界の協力はしばしばエージェント間の集中的な調整を必要とする。
単調なユーティリティの単調混合として値関数を学習する従来の方法は、非単調なリターンでタスクを解くことはできない。
非単調な問題に対処するための新しい明示的な信用割当手法を提案する。
論文 参考訳(メタデータ) (2023-02-14T07:23:59Z) - Modeling the Interaction between Agents in Cooperative Multi-Agent
Reinforcement Learning [2.9360071145551068]
対話型アクター・クリティック(IAC)と呼ばれる新しい協調型MARLアルゴリズムを提案する。
IACは政策と価値関数の観点からエージェントの相互作用をモデル化する。
連続制御タスクに値分解手法を拡張し、古典的な制御やマルチエージェント粒子環境を含むベンチマークタスク上でIACを評価する。
論文 参考訳(メタデータ) (2021-02-10T01:58:28Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
我々はUniversal Value Exploration(UneVEn)と呼ばれる新しいMARLアプローチを提案する。
UneVEnは、一連の関連するタスクと、普遍的な後継機能の線形分解を同時に学習する。
一連の探索ゲームにおける実証的な結果、エージェント間の重要な調整を必要とする協調捕食・捕食作業への挑戦、およびStarCraft IIのマイクロマネジメントベンチマークは、UneVEnが他の最先端のMARLメソッドが失敗するタスクを解決できることを示している。
論文 参考訳(メタデータ) (2020-10-06T19:08:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。