論文の概要: The Power of Language: Understanding Sentiment Towards the Climate
Emergency using Twitter Data
- arxiv url: http://arxiv.org/abs/2101.10376v1
- Date: Mon, 25 Jan 2021 19:51:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-14 22:59:16.795626
- Title: The Power of Language: Understanding Sentiment Towards the Climate
Emergency using Twitter Data
- Title(参考訳): 言語の力:twitterデータを用いた気候緊急事態に対する感情理解
- Authors: Arman Sarjou
- Abstract要約: 原油先物と気候危機に対する感情との間には関係があると推測できる。
本研究は,気候危機時の会話を3つのトピックに分割することが可能であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding how attitudes towards the Climate Emergency vary can hold the
key to driving policy changes for effective action to mitigate climate related
risk. The Oil and Gas industry account for a significant proportion of global
emissions and so it could be speculated that there is a relationship between
Crude Oil Futures and sentiment towards the Climate Emergency. Using Latent
Dirichlet Allocation for Topic Modelling on a bespoke Twitter dataset, this
study shows that it is possible to split the conversation surrounding the
Climate Emergency into 3 distinct topics. Forecasting Crude Oil Futures using
Seasonal AutoRegressive Integrated Moving Average Modelling gives promising
results with a root mean squared error of 0.196 and 0.209 on the training and
testing data respectively. Understanding variation in attitudes towards climate
emergency provides inconclusive results which could be improved using
spatial-temporal analysis methods such as Density Based Clustering (DBSCAN).
- Abstract(参考訳): 気候危機に対する態度の違いを理解することは、気候変動に関するリスクを軽減する効果的な行動のための政策変更を推進するための鍵となる。
石油・ガス産業は、世界の排出量のかなりの割合を占めているため、原油先物と気候危機に対する感情との間に関係があると推測することができます。
本研究は,twitter上でのトピックモデリングに潜在ディリクレ割当を用いることにより,気候災害時の会話を3つのトピックに分割することが可能であることを示す。
季節的自動回帰統合移動平均モデリングを用いた原油先物予測は、トレーニングデータとテストデータに0.196と0.209の根本平均二乗誤差で有望な結果をもたらす。
気候緊急事態に対する態度の変化を理解することは、密度ベースクラスタリング(dbscan)のような時空間分析手法を用いて改善できる決定的な結果をもたらす。
関連論文リスト
- Indexing and Visualization of Climate Change Narratives Using BERT and Causal Extraction [2.7325857919669327]
本稿では,2つの自然言語処理手法であるBERT(Bidirectional Representations from Transformers)と因果抽出を用いて,気候変動に関する新聞記事の分析を行う。
方法論の斬新さは、新聞の著者が仮定する因果関係を抽出し、定量化することができた。
論文 参考訳(メタデータ) (2024-08-03T11:05:41Z) - VegeDiff: Latent Diffusion Model for Geospatial Vegetation Forecasting [58.12667617617306]
地理空間植生予測タスクのためのVegeDiffを提案する。
VegeDiffは、植物の変化過程の不確かさを確率的に捉えるために拡散モデルを使用した最初の企業である。
植生の変化の不確かさを捉え、関連する変数の複雑な影響をモデル化することで、VegeDiffは既存の決定論的手法より優れている。
論文 参考訳(メタデータ) (2024-07-17T14:15:52Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
我々は、気象時系列から表現指標を予測するために、ディープニューラルネットワークを訓練する。
このアプローチは従来のプロセスベースのモデルよりも優れています。
論文 参考訳(メタデータ) (2024-01-08T15:29:23Z) - CMIP X-MOS: Improving Climate Models with Extreme Model Output
Statistics [40.517778024431244]
自然災害リスクの予測を改善するために, エクストリームモデル出力統計(X-MOS)を導入する。
この手法は, 気象観測所から得られた実測値にCMIPモデル出力を正確にマッピングするために, 深部回帰手法を用いる。
これまでの研究とは対照的に,本研究では,将来の気候パラメータ分布の尾部推定の強化に重点を置いている。
論文 参考訳(メタデータ) (2023-10-24T13:18:53Z) - Characterizing climate pathways using feature importance on echo state
networks [0.0]
エコー状態ネットワーク(ESN)は、時間的データのために設計された計算効率の良いニューラルネットワークのバリエーションである。
ESNは非解釈可能なブラックボックスモデルであり、変数関係を理解する上でハードルとなる。
我々は,特徴重要度の評価と比較を行うシミュレーション研究を行い,再分析気候データに対するアプローチを実証する。
論文 参考訳(メタデータ) (2023-10-12T16:55:04Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Robust detection and attribution of climate change under interventions [4.344839102717429]
フィンガープリントは気候変動の検出と属性(D&A)の鍵となるツールである
本稿では,教師付き学習に基づく直接D&A手法を提案し,頑健な予測につながる指紋を抽出する。
本研究は, 関連する介入に対するロバスト性制約を組み込むことは, 気候変動の検出と帰属に有益であることが示唆された。
論文 参考訳(メタデータ) (2022-12-09T15:13:40Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - Analyzing Sustainability Reports Using Natural Language Processing [68.8204255655161]
近年、企業は環境への影響を緩和し、気候変動の状況に適応することを目指している。
これは、環境・社会・ガバナンス(ESG)の傘下にある様々な種類の気候リスクと暴露を網羅する、ますます徹底した報告を通じて報告されている。
本稿では,本稿で開発したツールと方法論について紹介する。
論文 参考訳(メタデータ) (2020-11-03T21:22:42Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
2つの気候モデルのうちの1つで第3の中間安定状態が見つかる。
我々のアプローチを組み合わせることで、海洋熱輸送とエントロピー生産の負のフィードバックが地球の気候の地形をどのように大きく変えるかを特定することができる。
論文 参考訳(メタデータ) (2020-10-20T15:31:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。