Hyper-optimization with Gaussian Process and Differential Evolution
Algorithm
- URL: http://arxiv.org/abs/2101.10625v1
- Date: Tue, 26 Jan 2021 08:33:00 GMT
- Title: Hyper-optimization with Gaussian Process and Differential Evolution
Algorithm
- Authors: Jakub Klus, Pavel Grunt, Martin Dobrovoln\'y
- Abstract summary: This paper presents specific modifications of Gaussian Process optimization components from available scientific libraries.
presented modifications were submitted to BlackBox 2020 challenge, where it outperformed some conventionally available optimization libraries.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimization of problems with high computational power demands is a
challenging task. A probabilistic approach to such optimization called Bayesian
optimization lowers performance demands by solving mathematically simpler model
of the problem. Selected approach, Gaussian Process, models problem using a
mixture of Gaussian functions. This paper presents specific modifications of
Gaussian Process optimization components from available scientific libraries.
Presented modifications were submitted to BlackBox 2020 challenge, where it
outperformed some conventionally available optimization libraries.
Related papers
- Quantum-Enhanced Simulation-Based Optimization for Newsvendor Problems [5.500172106704342]
We exploit the enhanced efficiency of Quantum Amplitude Estimation (QAE) compared to classical Monte Carlo simulation.
In this work, we make use of a quantum-enhanced algorithm for simulation-based optimization and apply it to solve a variant of the classical News problem known to be NP-hard.
arXiv Detail & Related papers (2024-03-26T05:14:50Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - Particle Swarm Optimization: Fundamental Study and its Application to
Optimization and to Jetty Scheduling Problems [0.0]
The advantages of evolutionary algorithms with respect to traditional methods have been greatly discussed in the literature.
While particle swarms share such advantages, they outperform evolutionary algorithms in that they require lower computational cost and easier implementation.
This paper does not intend to study their tuning, general-purpose settings are taken from previous studies, and virtually the same algorithm is used to optimize a variety of notably different problems.
arXiv Detail & Related papers (2021-01-25T02:06:30Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z) - Adaptive First-and Zeroth-order Methods for Weakly Convex Stochastic
Optimization Problems [12.010310883787911]
We analyze a new family of adaptive subgradient methods for solving an important class of weakly convex (possibly nonsmooth) optimization problems.
Experimental results indicate how the proposed algorithms empirically outperform its zerothorder gradient descent and its design variant.
arXiv Detail & Related papers (2020-05-19T07:44:52Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z) - Scalable Hyperparameter Optimization with Lazy Gaussian Processes [1.3999481573773074]
We present a novel, highly accurate approximation of the underlying Gaussian Process.
The first experiments show speedups of a factor of 162 in single node and further speed up by a factor of 5 in a parallel environment.
arXiv Detail & Related papers (2020-01-16T10:15:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.