論文の概要: Few-Shot Semantic Parsing for New Predicates
- arxiv url: http://arxiv.org/abs/2101.10708v1
- Date: Tue, 26 Jan 2021 11:08:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-14 10:12:45.584981
- Title: Few-Shot Semantic Parsing for New Predicates
- Title(参考訳): 新しい述語に対する意味的パーシング
- Authors: Zhuang Li, Lizhen Qu, Shuo Huang, Gholamreza Haffari
- Abstract要約: 最先端のニューラルセマンティクスは、k=1のベンチマークデータセットで25%未満の精度を達成する。
提案手法は1ショットと2ショットの両方の設定でベースラインを一貫して上回っています。
- 参考スコア(独自算出の注目度): 33.84280840107834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we investigate the problems of semantic parsing in a few-shot
learning setting. In this setting, we are provided with utterance-logical form
pairs per new predicate. The state-of-the-art neural semantic parsers achieve
less than 25% accuracy on benchmark datasets when k= 1. To tackle this problem,
we proposed to i) apply a designated meta-learning method to train the model;
ii) regularize attention scores with alignment statistics; iii) apply a
smoothing technique in pre-training. As a result, our method consistently
outperforms all the baselines in both one and two-shot settings.
- Abstract(参考訳): 本研究では,数発学習環境における意味解析の問題点について検討する。
この設定では、新しい述語ごとに発話論理形式のペアを提供する。
最先端のニューラルネットワークセマンティックパーザは、k=1のベンチマークデータセットで25%未満の精度を達成する。
この問題に対処するため,i)モデルトレーニングにメタラーニング法を適用し,i)アライメント統計を用いたアライメントスコアの正規化を行い,iii)事前学習にスムーズな手法を適用した。
その結果,本手法は1ショットと2ショットの両設定において,ベースラインを一貫して上回っている。
関連論文リスト
- Scalable Fine-tuning from Multiple Data Sources: A First-Order Approximation Approach [17.79010397902909]
目的タスクに対する言語モデル(LM)の微調整の問題について,$n$補助タスクの情報を用いて最適に検討する。
この問題には、NLPにおけるターゲット命令チューニングや、チェーン・オブ・ファインタニングにおけるデータ選択など、幅広い応用がある。
繰り返し学習せずにモデル微調整性能を推定する新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-28T21:26:50Z) - Q-REG: End-to-End Trainable Point Cloud Registration with Surface
Curvature [81.25511385257344]
本稿では、リッチな幾何学的情報を用いて、単一の対応から剛性ポーズを推定する新しい解Q-REGを提案する。
Q-REGは、堅牢な推定を徹底的な探索として形式化し、エンドツーエンドのトレーニングを可能にする。
実験では、Q-REGは対応マッチング法に非依存であり、推論とエンドツーエンドトレーニングの両方で使用した場合に一貫した改善を提供する。
論文 参考訳(メタデータ) (2023-09-27T20:58:53Z) - Hierarchical Phrase-based Sequence-to-Sequence Learning [94.10257313923478]
本稿では、学習中の帰納バイアスの源として階層的フレーズを取り入れ、推論中の明示的な制約として、標準的なシーケンス・ツー・シーケンス(seq2seq)モデルの柔軟性を維持するニューラルトランスデューサについて述べる。
本手法では,木が原文と対象句を階層的に整列するブラケット文法に基づく識別的導出法と,整列した句を1対1で翻訳するニューラルネットワークセク2セックモデルという2つのモデルを訓練する。
論文 参考訳(メタデータ) (2022-11-15T05:22:40Z) - Adaptive Meta-learner via Gradient Similarity for Few-shot Text
Classification [11.035878821365149]
本稿では, モデル一般化能力の向上を図るため, 適応型メタラーナをグラディエント類似性(AMGS)を介して提案する。
いくつかのベンチマークによる実験結果から,提案したAMGSは連続的にテキスト分類性能を向上することが示された。
論文 参考訳(メタデータ) (2022-09-10T16:14:53Z) - Training Naturalized Semantic Parsers with Very Little Data [10.709587018625275]
State-of-the-art(SOTA)セマンティクスは、大量のテキストに基づいて事前訓練された大規模な言語モデルに基づくセク2セックアーキテクチャである。
最近の研究は意味解析の改革を探求しており、出力シーケンスはそれ自体が自然言語文である。
本手法は,Overnightデータセット上で新たなSOTA数ショット性能を実現する。
論文 参考訳(メタデータ) (2022-04-29T17:14:54Z) - Total Recall: a Customized Continual Learning Method for Neural Semantic
Parsers [38.035925090154024]
ニューラルセマンティックは、以前のタスクから完全なトレーニングデータにアクセスすることなく、シーケンシャルにタスクを学習する。
本稿では,2つの側面からニューラルセマンティクスを学習するための連続学習手法であるTotalRecallを提案する。
我々は,TotalRecallで訓練したニューラルネットワークセマンティクスが,SOTA連続学習アルゴリズムで直接訓練したセマンティクスよりも優れた性能を達成し,スクラッチからのトレーニングに比べて3~6倍の高速化を実現することを示した。
論文 参考訳(メタデータ) (2021-09-11T04:33:28Z) - Avoiding Inference Heuristics in Few-shot Prompt-based Finetuning [57.4036085386653]
文ペア分類タスクのプロンプトベースモデルでは,語彙重なりに基づく推論の一般的な落とし穴が依然として残っていることを示す。
そこで,プレトレーニングウェイトを保存する正規化を加えることは,この破壊的な微調整の傾向を緩和するのに有効であることを示す。
論文 参考訳(メタデータ) (2021-09-09T10:10:29Z) - Improving Deep Learning Sound Events Classifiers using Gram Matrix
Feature-wise Correlations [1.2891210250935146]
本手法では,一般CNNの全てのアクティベーションを分析し,Gram Matricesを用いて特徴表現を生成する。
提案手法はどのCNNにも適用可能であり,2つのデータセット上で4つの異なるアーキテクチャを実験的に評価した結果,ベースラインモデルが一貫して改善されることが示された。
論文 参考訳(メタデータ) (2021-02-23T16:08:02Z) - Pre-training Is (Almost) All You Need: An Application to Commonsense
Reasoning [61.32992639292889]
事前学習されたトランスモデルの微調整は、一般的なNLPタスクを解決するための標準的なアプローチとなっている。
そこで本研究では,可視性ランキングタスクをフルテキスト形式でキャストする新たなスコアリング手法を提案する。
提案手法は, ランダム再起動にまたがって, より安定した学習段階を提供することを示す。
論文 参考訳(メタデータ) (2020-04-29T10:54:40Z) - Fast Template Matching and Update for Video Object Tracking and
Segmentation [56.465510428878]
私たちが取り組もうとしている主な課題は、フレームの列にまたがるマルチインスタンスの半教師付きビデオオブジェクトセグメンテーションである。
課題は、結果を予測するためのマッチングメソッドの選択と、ターゲットテンプレートを更新するかどうかを決定することである。
本稿では,これら2つの決定を同時に行うために,強化学習を利用する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-04-16T08:58:45Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。