CPTR: Full Transformer Network for Image Captioning
- URL: http://arxiv.org/abs/2101.10804v3
- Date: Thu, 28 Jan 2021 04:38:38 GMT
- Title: CPTR: Full Transformer Network for Image Captioning
- Authors: Wei Liu, Sihan Chen, Longteng Guo, Xinxin Zhu, Jing Liu
- Abstract summary: CaPtion TransformeR (CPTR) takes the sequentialized raw images as the input to Transformer.
Compared to the "CNN+Transformer" design paradigm, our model can model global context at every encoder layer from the beginning.
- Score: 15.869556479220984
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we consider the image captioning task from a new
sequence-to-sequence prediction perspective and propose CaPtion TransformeR
(CPTR) which takes the sequentialized raw images as the input to Transformer.
Compared to the "CNN+Transformer" design paradigm, our model can model global
context at every encoder layer from the beginning and is totally
convolution-free. Extensive experiments demonstrate the effectiveness of the
proposed model and we surpass the conventional "CNN+Transformer" methods on the
MSCOCO dataset. Besides, we provide detailed visualizations of the
self-attention between patches in the encoder and the "words-to-patches"
attention in the decoder thanks to the full Transformer architecture.
Related papers
- Patch Is Not All You Need [57.290256181083016]
We propose a novel Pattern Transformer to adaptively convert images to pattern sequences for Transformer input.
We employ the Convolutional Neural Network to extract various patterns from the input image.
We have accomplished state-of-the-art performance on CIFAR-10 and CIFAR-100, and have achieved competitive results on ImageNet.
arXiv Detail & Related papers (2023-08-21T13:54:00Z) - AICT: An Adaptive Image Compression Transformer [18.05997169440533]
We propose a more straightforward yet effective Tranformer-based channel-wise auto-regressive prior model, resulting in an absolute image compression transformer (ICT)
The proposed ICT can capture both global and local contexts from the latent representations.
We leverage a learnable scaling module with a sandwich ConvNeXt-based pre/post-processor to accurately extract more compact latent representation.
arXiv Detail & Related papers (2023-07-12T11:32:02Z) - Neural Data-Dependent Transform for Learned Image Compression [72.86505042102155]
We build a neural data-dependent transform and introduce a continuous online mode decision mechanism to jointly optimize the coding efficiency for each individual image.
The experimental results show the effectiveness of the proposed neural-syntax design and the continuous online mode decision mechanism.
arXiv Detail & Related papers (2022-03-09T14:56:48Z) - Towards End-to-End Image Compression and Analysis with Transformers [99.50111380056043]
We propose an end-to-end image compression and analysis model with Transformers, targeting to the cloud-based image classification application.
We aim to redesign the Vision Transformer (ViT) model to perform image classification from the compressed features and facilitate image compression with the long-term information from the Transformer.
Experimental results demonstrate the effectiveness of the proposed model in both the image compression and the classification tasks.
arXiv Detail & Related papers (2021-12-17T03:28:14Z) - Transformer-based Image Compression [18.976159633970177]
Transformer-based Image Compression (TIC) approach is developed which reuses the canonical variational autoencoder (VAE) architecture with paired main and hyper encoder-decoders.
TIC rivals with state-of-the-art approaches including deep convolutional neural networks (CNNs) based learnt image coding (LIC) methods and handcrafted rules-based intra profile of recently-approved Versatile Video Coding (VVC) standard.
arXiv Detail & Related papers (2021-11-12T13:13:20Z) - Fully Transformer Networks for Semantic ImageSegmentation [26.037770622551882]
We explore a novel framework for semantic image segmentation, which is encoder-decoder based Fully Transformer Networks (FTN)
We propose a Pyramid Group Transformer (PGT) as the encoder for progressively learning hierarchical features, while reducing the computation complexity of the standard visual transformer(ViT)
Then, we propose a Feature Pyramid Transformer (FPT) to fuse semantic-level and spatial-level information from multiple levels of the PGT encoder for semantic image segmentation.
arXiv Detail & Related papers (2021-06-08T05:15:28Z) - Rethinking Global Context in Crowd Counting [70.54184500538338]
A pure transformer is used to extract features with global information from overlapping image patches.
Inspired by classification, we add a context token to the input sequence, to facilitate information exchange with tokens corresponding to image patches.
arXiv Detail & Related papers (2021-05-23T12:44:27Z) - Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation [63.46694853953092]
Swin-Unet is an Unet-like pure Transformer for medical image segmentation.
tokenized image patches are fed into the Transformer-based U-shaped decoder-Decoder architecture.
arXiv Detail & Related papers (2021-05-12T09:30:26Z) - Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
with Transformers [149.78470371525754]
We treat semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer to encode an image as a sequence of patches.
With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR)
SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes.
arXiv Detail & Related papers (2020-12-31T18:55:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.