Artificial Intelligence for Satellite Communication: A Review
- URL: http://arxiv.org/abs/2101.10899v1
- Date: Mon, 25 Jan 2021 13:01:16 GMT
- Title: Artificial Intelligence for Satellite Communication: A Review
- Authors: Fares Fourati, Mohamed-Slim Alouini
- Abstract summary: This work provides a general overview of AI, its diverse sub-fields, and its state-of-the-art algorithms.
The application of AI to a wide variety of satellite communication aspects have demonstrated excellent potential, including beam-hopping, anti-jamming, network traffic forecasting, channel modeling, telemetry mining, ionospheric scintillation detecting, interference managing, remote sensing, behavior modeling, space-air-ground integrating, and energy managing.
- Score: 91.3755431537592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Satellite communication offers the prospect of service continuity over
uncovered and under-covered areas, service ubiquity, and service scalability.
However, several challenges must first be addressed to realize these benefits,
as the resource management, network control, network security, spectrum
management, and energy usage of satellite networks are more challenging than
that of terrestrial networks. Meanwhile, artificial intelligence (AI),
including machine learning, deep learning, and reinforcement learning, has been
steadily growing as a research field and has shown successful results in
diverse applications, including wireless communication. In particular, the
application of AI to a wide variety of satellite communication aspects have
demonstrated excellent potential, including beam-hopping, anti-jamming, network
traffic forecasting, channel modeling, telemetry mining, ionospheric
scintillation detecting, interference managing, remote sensing, behavior
modeling, space-air-ground integrating, and energy managing. This work thus
provides a general overview of AI, its diverse sub-fields, and its
state-of-the-art algorithms. Several challenges facing diverse aspects of
satellite communication systems are then discussed, and their proposed and
potential AI-based solutions are presented. Finally, an outlook of field is
drawn, and future steps are suggested.
Related papers
- A Survey on Integrated Sensing, Communication, and Computation [57.6762830152638]
The forthcoming generation of wireless technology, 6G, aims to usher in an era of ubiquitous intelligent services.
The performance of these modules is interdependent, creating a resource competition for time, energy, and bandwidth.
Existing techniques like integrated communication and computation (ICC), integrated sensing and computation (ISC), and integrated sensing and communication (ISAC) have made partial strides in addressing this challenge.
arXiv Detail & Related papers (2024-08-15T11:01:35Z) - Leveraging Large Language Models for Integrated Satellite-Aerial-Terrestrial Networks: Recent Advances and Future Directions [47.791246017237]
Integrated satellite, aerial, and terrestrial networks (ISATNs) represent a sophisticated convergence of diverse communication technologies.
This paper explores the transformative potential of integrating Large Language Models (LLMs) into ISATNs.
arXiv Detail & Related papers (2024-07-05T15:23:43Z) - On the Interplay of Artificial Intelligence and Space-Air-Ground
Integrated Networks: A Survey [1.5883812630616518]
Space-Air-Ground Integrated Networks (SAGINs) are vital enablers of the emerging sixth-generation (6G) wireless networks.
In this work, we aim to investigate the interplay of AI and SAGINs by providing a holistic overview of state-of-the-art research in AI-enabled SAGINs.
arXiv Detail & Related papers (2024-01-20T16:10:31Z) - Artificial Intelligence Techniques for Next-Generation Mega Satellite
Networks [37.87439415970645]
This article introduces the application of AI techniques for integrated terrestrial satellite networks, particularly massive satellite network communications.
It details the unique features of massive satellite networks, and the overarching challenges concomitant with their integration into the current communication infrastructure.
This entails applying AI for forecasting the highly dynamic radio channel, spectrum sensing and classification, signal detection and demodulation, inter-satellite and satellite access network optimization, and network security.
arXiv Detail & Related papers (2022-06-02T13:56:32Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
Integrated space-air-ground networks promise to offer a valuable solution space for empowering the sixth generation of communication networks (6G)
This paper showcases the prospects of machine learning in the context of user scheduling in integrated space-air-ground communications.
arXiv Detail & Related papers (2022-05-27T13:09:29Z) - A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From
Communications to Sensing and Intelligence [152.89360859658296]
5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC) and massive machine-type communications (mMTC)
On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in 3D space.
On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference.
arXiv Detail & Related papers (2020-10-19T08:56:04Z) - Artificial Intelligence for UAV-enabled Wireless Networks: A Survey [72.10851256475742]
Unmanned aerial vehicles (UAVs) are considered as one of the promising technologies for the next-generation wireless communication networks.
Artificial intelligence (AI) is growing rapidly nowadays and has been very successful.
We provide a comprehensive overview of some potential applications of AI in UAV-based networks.
arXiv Detail & Related papers (2020-09-24T07:11:31Z) - Swarm Intelligence for Next-Generation Wireless Networks: Recent
Advances and Applications [39.38804488121544]
Swarm intelligence (SI) has recently appeared as a promising optimization tool for wireless networks.
We provide an overview of SI techniques from fundamental concepts to well-knowns.
We review the applications of SI to settle emerging issues in next-generation wireless networks.
arXiv Detail & Related papers (2020-07-30T04:32:49Z) - Communication-Efficient Edge AI: Algorithms and Systems [39.28788394839187]
Wide scale deployment of edge devices (e.g., IoT devices) generates an unprecedented scale of data.
Such enormous data cannot all be sent from end devices to the cloud for processing.
By pushing inference and training processes of AI models to edge nodes, edge AI has emerged as a promising alternative.
arXiv Detail & Related papers (2020-02-22T09:27:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.