Distributed satellite information networks: Architecture, enabling technologies, and trends
- URL: http://arxiv.org/abs/2412.12587v1
- Date: Tue, 17 Dec 2024 06:44:05 GMT
- Title: Distributed satellite information networks: Architecture, enabling technologies, and trends
- Authors: Qinyu Zhang, Liang Xu, Jianhao Huang, Tao Yang, Jian Jiao, Ye Wang, Yao Shi, Chiya Zhang, Xingjian Zhang, Ke Zhang, Yupeng Gong, Na Deng, Nan Zhao, Zhen Gao, Shujun Han, Xiaodong Xu, Li You, Dongming Wang, Shan Jiang, Dixian Zhao, Nan Zhang, Liujun Hu, Xiongwen He, Yonghui Li, Xiqi Gao, Xiaohu You,
- Abstract summary: The distributed satellite information networks (DSIN) have emerged as an innovative architecture, bridging information gaps across diverse satellite systems.
This survey first provides a profound discussion about innovative network architectures of DSIN.
The DSIN faces challenges from network heterogeneity, unpredictable channel dynamics, sparse resources, and decentralized collaboration frameworks.
- Score: 56.747473208256174
- License:
- Abstract: Driven by the vision of ubiquitous connectivity and wireless intelligence, the evolution of ultra-dense constellation-based satellite-integrated Internet is underway, now taking preliminary shape. Nevertheless, the entrenched institutional silos and limited, nonrenewable heterogeneous network resources leave current satellite systems struggling to accommodate the escalating demands of next-generation intelligent applications. In this context, the distributed satellite information networks (DSIN), exemplified by the cohesive clustered satellites system, have emerged as an innovative architecture, bridging information gaps across diverse satellite systems, such as communication, navigation, and remote sensing, and establishing a unified, open information network paradigm to support resilient space information services. This survey first provides a profound discussion about innovative network architectures of DSIN, encompassing distributed regenerative satellite network architecture, distributed satellite computing network architecture, and reconfigurable satellite formation flying, to enable flexible and scalable communication, computing and control. The DSIN faces challenges from network heterogeneity, unpredictable channel dynamics, sparse resources, and decentralized collaboration frameworks. To address these issues, a series of enabling technologies is identified, including channel modeling and estimation, cloud-native distributed MIMO cooperation, grant-free massive access, network routing, and the proper combination of all these diversity techniques. Furthermore, to heighten the overall resource efficiency, the cross-layer optimization techniques are further developed to meet upper-layer deterministic, adaptive and secure information services requirements. In addition, emerging research directions and new opportunities are highlighted on the way to achieving the DSIN vision.
Related papers
- Brain-Inspired Decentralized Satellite Learning in Space Computing Power Networks [42.67808523367945]
Space Computing Power Networks (Space-CPN) emerges as a promising architecture to coordinate the computing capability of satellites and enable on board data processing.
We propose to employ spiking neural networks (SNNs), which is supported by the neuromorphic computing architecture, for on-board data processing.
We put forward a decentralized neuromorphic learning framework, where a communication-efficient inter-plane model aggregation method is developed.
arXiv Detail & Related papers (2025-01-27T12:29:47Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
The low transmission efficiency of the satellite data relay back mission has become a problem that is currently constraining the construction of the system.
We propose a distance similarity-based genetic optimization algorithm (DSGA), which considers the state characteristics between the tasks and introduces a weighted Euclidean distance method to determine the similarity between the tasks.
arXiv Detail & Related papers (2024-08-29T06:57:45Z) - Hierarchical Learning and Computing over Space-Ground Integrated Networks [40.19542938629252]
We propose a hierarchical learning and computing framework to provide global aggregation services for locally trained models on ground IoT devices.
We formulate a network energy problem for model aggregation, which turns out to be a Directed Steiner Tree (DST) problem.
We propose a topologyaware energy-efficient routing (TAEER) algorithm to solve the DST problem by finding a minimum spanning arborescence on a substitute directed graph.
arXiv Detail & Related papers (2024-08-26T09:05:43Z) - Leveraging Large Language Models for Integrated Satellite-Aerial-Terrestrial Networks: Recent Advances and Future Directions [47.791246017237]
Integrated satellite, aerial, and terrestrial networks (ISATNs) represent a sophisticated convergence of diverse communication technologies.
This paper explores the transformative potential of integrating Large Language Models (LLMs) into ISATNs.
arXiv Detail & Related papers (2024-07-05T15:23:43Z) - Olive Branch Learning: A Topology-Aware Federated Learning Framework for
Space-Air-Ground Integrated Network [19.059950250921926]
Training AI models centrally with the assistance of SAGIN faces the challenges of highly constrained network topology, inefficient data transmission, and privacy issues.
We first propose a novel topology-aware federated learning framework for the SAGIN, namely Olive Branch Learning (OBL)
We extend our OBL framework and CNASA algorithm to adapt to more complex multi-orbit satellite networks.
arXiv Detail & Related papers (2022-12-02T14:51:42Z) - Artificial Intelligence Techniques for Next-Generation Mega Satellite
Networks [37.87439415970645]
This article introduces the application of AI techniques for integrated terrestrial satellite networks, particularly massive satellite network communications.
It details the unique features of massive satellite networks, and the overarching challenges concomitant with their integration into the current communication infrastructure.
This entails applying AI for forecasting the highly dynamic radio channel, spectrum sensing and classification, signal detection and demodulation, inter-satellite and satellite access network optimization, and network security.
arXiv Detail & Related papers (2022-06-02T13:56:32Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
Integrated space-air-ground networks promise to offer a valuable solution space for empowering the sixth generation of communication networks (6G)
This paper showcases the prospects of machine learning in the context of user scheduling in integrated space-air-ground communications.
arXiv Detail & Related papers (2022-05-27T13:09:29Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
Current maritime communications mainly rely on satellites having meager transmission resources, hence suffering from poorer performance than modern terrestrial wireless networks.
With the growth of transcontinental air traffic, the promising concept of aeronautical ad hoc networking relying on commercial passenger airplanes is potentially capable of enhancing satellite-based maritime communications via air-to-ground and multi-hop air-to-air links.
We propose space-air-ground integrated networks (SAGINs) for supporting ubiquitous maritime communications, where the low-earth-orbit satellite constellations, passenger airplanes, terrestrial base stations, ships, respectively, serve as the space-, air-,
arXiv Detail & Related papers (2021-10-28T14:12:10Z) - Artificial Intelligence for Satellite Communication: A Review [91.3755431537592]
This work provides a general overview of AI, its diverse sub-fields, and its state-of-the-art algorithms.
The application of AI to a wide variety of satellite communication aspects have demonstrated excellent potential, including beam-hopping, anti-jamming, network traffic forecasting, channel modeling, telemetry mining, ionospheric scintillation detecting, interference managing, remote sensing, behavior modeling, space-air-ground integrating, and energy managing.
arXiv Detail & Related papers (2021-01-25T13:01:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.