Enabling Dataflow Optimization for Quantum Programs
- URL: http://arxiv.org/abs/2101.11030v2
- Date: Sat, 14 Aug 2021 16:17:18 GMT
- Title: Enabling Dataflow Optimization for Quantum Programs
- Authors: David Ittah, Thomas H\"aner, Vadym Kliuchnikov, Torsten Hoefler
- Abstract summary: IR for quantum computing exposes quantum and classical data dependencies for the purpose of optimization.
We present a prototype implementation based on MLIR that includes several quantum-specific optimization passes.
- Score: 11.71212583708166
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an IR for quantum computing that directly exposes quantum and
classical data dependencies for the purpose of optimization. The Quantum
Intermediate Representation for Optimization (QIRO) consists of two dialects,
one input dialect and one that is specifically tailored to enable
quantum-classical co-optimization. While the first employs a perhaps more
intuitive memory-semantics (quantum operations act as side-effects), the latter
uses value-semantics (operations consume and produce states). Crucially, this
encodes the dataflow directly in the IR, allowing for a host of optimizations
that leverage dataflow analysis. We discuss how to map existing quantum
programming languages to the input dialect and how to lower the resulting IR to
the optimization dialect. We present a prototype implementation based on MLIR
that includes several quantum-specific optimization passes. Our benchmarks show
that significant improvements in resource requirements are possible even
through static optimization. In contrast to circuit optimization at run time,
this is achieved while incurring only a small constant overhead in compilation
time, making this a compelling approach for quantum program optimization at
application scale.
Related papers
- Surrogate optimization of variational quantum circuits [1.0546736060336612]
Variational quantum eigensolvers are touted as a near-term algorithm capable of impacting many applications.
Finding algorithms and methods to improve convergence is important to accelerate the capabilities of near-term hardware for VQE.
arXiv Detail & Related papers (2024-04-03T18:00:00Z) - Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
We compare the performance of classicals across a series of partially-randomized tasks.
We focus on local zeroth-orders due to their generally favorable performance and query-efficiency on quantum systems.
arXiv Detail & Related papers (2023-10-14T02:13:26Z) - Graph Neural Network Autoencoders for Efficient Quantum Circuit
Optimisation [69.43216268165402]
We present for the first time how to use graph neural network (GNN) autoencoders for the optimisation of quantum circuits.
We construct directed acyclic graphs from the quantum circuits, encode the graphs and use the encodings to represent RL states.
Our method is the first realistic first step towards very large scale RL quantum circuit optimisation.
arXiv Detail & Related papers (2023-03-06T16:51:30Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
Current quantum optimization algorithms require representing the original problem as a binary optimization problem, which is then converted into an equivalent Ising model suitable for the quantum device.
We propose to design classical programs for computing the objective function and certifying the constraints, and later compile them to quantum circuits.
This results in a new variant of the Quantum Approximate Optimization Algorithm (QAOA), which we name the Prog-QAOA.
arXiv Detail & Related papers (2022-09-07T18:01:01Z) - Benchmarking of Different Optimizers in the Variational Quantum
Algorithms for Applications in Quantum Chemistry [0.0]
Classical yardsticks play a crucial role in determining the accuracy and convergence of variational quantum algorithms.
We consider a few popular yardsticks and assess their performance in variational quantum algorithms for applications in quantum chemistry.
arXiv Detail & Related papers (2022-08-22T13:02:00Z) - Enabling Retargetable Optimizing Compilers for Quantum Accelerators via
a Multi-Level Intermediate Representation [78.8942067357231]
We present a multi-level quantum-classical intermediate representation (IR) that enables an optimizing, retargetable, ahead-of-time compiler.
We support the entire gate-based OpenQASM 3 language and provide custom extensions for common quantum programming patterns and improved syntax.
Our work results in compile times that are 1000x faster than standard Pythonic approaches, and 5-10x faster than comparative standalone quantum language compilers.
arXiv Detail & Related papers (2021-09-01T17:29:47Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
Variational quantum algorithms (VQAs) have the potential of utilizing near-term quantum machines to gain certain computational advantages.
Modern VQAs suffer from cumbersome computational overhead, hampered by the tradition of employing a solitary quantum processor to handle large data.
Here we devise an efficient distributed optimization scheme, called QUDIO, to address this issue.
arXiv Detail & Related papers (2021-06-24T08:18:42Z) - Relaxed Peephole Optimization: A Novel Compiler Optimization for Quantum
Circuits [15.9208532173357]
We propose a novel quantum compiler optimization, named relaxed peephole optimization (RPO) for quantum computers.
We define a qubit is in a basis state when, at a given point in time, its state is either in the X-, Y-, or Z-basis.
We extend our approach to optimize the quantum gates when some input qubits are in known pure states.
arXiv Detail & Related papers (2020-12-14T17:03:06Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Compilation of Fault-Tolerant Quantum Heuristics for Combinatorial
Optimization [0.14755786263360526]
We explore which quantum algorithms for optimization might be most practical to try out on a small fault-tolerant quantum computer.
Our results discourage the notion that any quantum optimization realizing only a quadratic speedup will achieve an advantage over classical algorithms.
arXiv Detail & Related papers (2020-07-14T22:54:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.