Sending or not sending twin-field quantum key distribution with
distinguishable decoy states
- URL: http://arxiv.org/abs/2101.11283v2
- Date: Sun, 7 Feb 2021 05:33:42 GMT
- Title: Sending or not sending twin-field quantum key distribution with
distinguishable decoy states
- Authors: Yi-Fei Lu, Mu-Sheng Jiang, Yang Wang, Xiao-Xu Zhang, Fan Liu, Chun
Zhou, Hong-Wei Li, Wan-Su Bao
- Abstract summary: We find the external modulation of different intensity states through the test, required in those TF-QKD with post-phase compensation, shows a side channel in frequency domain.
We propose a complete and undetected eavesdropping attack, named passive frequency shift attack, on sending or not-sending TF-QKD protocol.
Our results emphasize the importance of practical security at source and might provide a valuable reference for the practical implementation of TF-QKD.
- Score: 10.66830089114367
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Twin-field quantum key distribution (TF-QKD) and its variants can overcome
the fundamental rate-distance limit of QKD which has been demonstrated in the
laboratory and field while their physical implementations with side channels
remains to be further researched. We find the external modulation of different
intensity states through the test, required in those TF-QKD with post-phase
compensation, shows a side channel in frequency domain. Based on this, we
propose a complete and undetected eavesdropping attack, named passive frequency
shift attack, on sending or not-sending (SNS) TF-QKD protocol given any
difference between signal and decoy states in frequency domain which can be
extended to other imperfections with distinguishable decoy states. We analyze
this attack by giving the formula of upper bound of real secure key rate and
comparing it with lower bound of secret key rate under Alice and Bob's
estimation with the consideration of actively odd-parity pairing (AOPP) method
and finite key effects. The simulation results show that Eve can get full
information about the secret key bits without being detected at long distance.
Our results emphasize the importance of practical security at source and might
provide a valuable reference for the practical implementation of TF-QKD.
Related papers
- Empirical Risk-aware Machine Learning on Trojan-Horse Detection for Trusted Quantum Key Distribution Networks [31.857236131842843]
Quantum key distribution (QKD) is a cryptographic technique that offers high levels of data security during transmission.
The existence of a gap between theoretical concepts and practical implementation has raised concerns about the trustworthiness of QKD networks.
We propose the implementation of risk-aware machine learning techniques that present risk analysis for Trojan-horse attacks over the time-variant quantum channel.
arXiv Detail & Related papers (2024-01-26T03:36:13Z) - Finite-Key Analysis for Coherent One-Way Quantum Key Distribution [18.15943439545963]
Coherent-one-way (COW) quantum key distribution (QKD) is a significant communication protocol that has been implemented experimentally and deployed in practical products.
Existing security analyses of COW-QKD either provide a short transmission distance or lack immunity against coherent attacks in the finite-key regime.
We present a tight finite-key framework for a variant of COW-QKD, which has been proven to extend the secure transmission distance in the case.
arXiv Detail & Related papers (2023-09-28T03:32:06Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Phase-Matching Quantum Key Distribution without Intensity Modulation [25.004151934190965]
We propose a phase-matching quantum key distribution protocol without intensity modulation.
Simulation results show that the transmission distance of our protocol could reach 305 km in telecommunication fiber.
Our protocol provides a promising solution for constructing quantum networks.
arXiv Detail & Related papers (2023-03-21T04:32:01Z) - Experimental measurement-device-independent type quantum key
distribution with flawed and correlated sources [14.143874849657317]
Security of quantum key distribution (QKD) is threatened by discrepancies between realistic devices and theoretical assumptions.
Here, we adopt the reference technique to prove security of an efficient four-phase measurement-device-independent QKD using laser pulses against potential source imperfections.
In addition, we demonstrate the feasibility of our protocol through a proof-of-principle experimental implementation and achieve a secure key rate of 253 bps with a 20 dB channel loss.
arXiv Detail & Related papers (2022-04-18T13:44:51Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Twin-field quantum key distribution with passive-decoy state [22.26373392802507]
We propose passive-decoy based TF-QKD, in which we combine TF-QKD with the passive-decoy method.
We present a simulation comparing the key generation rate with that in active-decoy, the result shows our scheme performs as good as active decoy TF-QKD.
arXiv Detail & Related papers (2020-11-15T04:02:48Z) - Finite-key analysis for twin-field quantum key distribution based on
generalized operator dominance condition [23.004519226886444]
Quantum key distribution (QKD) can help two distant peers to share secret key bits, whose security is guaranteed by the law of physics.
Recently, twin-field (TF) QKD has been proposed and intensively studied, since it can beat the rate-distance limit.
We propose an improved finite-key analysis of TF-QKD through new operator dominance condition.
arXiv Detail & Related papers (2020-07-17T09:41:06Z) - Tight security bounds for decoy-state quantum key distribution [1.1563829079760959]
The BB84 quantum key distribution (QKD) combined with decoy-state method is currently the most practical protocol.
Here, we provide the rigorous and optimal analytic formula to solve the above tasks.
Our results can be widely applied to deal with statistical fluctuation in quantum cryptography protocols.
arXiv Detail & Related papers (2020-02-16T07:48:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.