Tight security bounds for decoy-state quantum key distribution
- URL: http://arxiv.org/abs/2002.06530v1
- Date: Sun, 16 Feb 2020 07:48:25 GMT
- Title: Tight security bounds for decoy-state quantum key distribution
- Authors: Hua-Lei Yin, Min-Gang Zhou, Jie Gu, Yuan-Mei Xie, Yu-Shuo Lu,
Zeng-Bing Chen
- Abstract summary: The BB84 quantum key distribution (QKD) combined with decoy-state method is currently the most practical protocol.
Here, we provide the rigorous and optimal analytic formula to solve the above tasks.
Our results can be widely applied to deal with statistical fluctuation in quantum cryptography protocols.
- Score: 1.1563829079760959
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The BB84 quantum key distribution (QKD) combined with decoy-state method is
currently the most practical protocol, which has been proved secure against
general attacks in the finite-key regime. Thereinto, statistical fluctuation
analysis methods are very important in dealing with finite-key effects, which
directly affect secret key rate, secure transmission distance and even the most
important security. There are two tasks of statistical fluctuation in
decoy-state BB84 QKD. One is the deviation between expected value and observed
value for a given expected value or observed value. The other is the deviation
between phase error rate of computational basis and bit error rate of dual
basis. Here, we provide the rigorous and optimal analytic formula to solve the
above tasks, resulting higher secret key rate and longer secure transmission
distance. Our results can be widely applied to deal with statistical
fluctuation in quantum cryptography protocols.
Related papers
- Enhanced Analysis for the Decoy-State Method [0.40964539027092917]
We first revisit and improve the key rate bound for the decoy-state method.
We then propose an enhanced framework for statistical fluctuation analysis.
Our approach to fluctuation analysis is not only applicable in quantum cryptography but can also be adapted to other quantum information processing tasks.
arXiv Detail & Related papers (2024-11-01T06:38:37Z) - Orthogonal-state-based Measurement Device Independent Quantum Communication [32.244698777387995]
We propose a new protocol of measurement-device-independent quantum secure direct communication and quantum dialogue employing single basis, i.e., Bell basis as decoy qubits for eavesdropping detection.
Our protocols leverage fundamentally distinct resources to close the security loopholes linked to measurement devices, while also effectively doubling the distance for secure direct message transmission.
arXiv Detail & Related papers (2024-09-30T15:57:17Z) - Finite-Key Analysis for Coherent One-Way Quantum Key Distribution [18.15943439545963]
Coherent-one-way (COW) quantum key distribution (QKD) is a significant communication protocol that has been implemented experimentally and deployed in practical products.
Existing security analyses of COW-QKD either provide a short transmission distance or lack immunity against coherent attacks in the finite-key regime.
We present a tight finite-key framework for a variant of COW-QKD, which has been proven to extend the secure transmission distance in the case.
arXiv Detail & Related papers (2023-09-28T03:32:06Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
arXiv Detail & Related papers (2023-05-18T06:24:45Z) - Security of decoy-state quantum key distribution with correlated
intensity fluctuations [0.0]
Current decoy-state QKD setups operate at GHz repetition rates.
memory effects in the modulators and electronics that control them create correlations between the intensities of the emitted pulses.
This translates into information leakage about the selected intensities.
arXiv Detail & Related papers (2022-06-14T09:05:41Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Neural network-based prediction of the secret-key rate of quantum key
distribution [6.040436695129137]
We construct a neural network that can quickly predict the secure key rate based on the experimental parameters and experimental results.
This allows the secure key rate of discrete-modulated CV-QKD to be extracted in real time on a low-power platform.
arXiv Detail & Related papers (2021-08-05T12:34:56Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Sending or not sending twin-field quantum key distribution with
distinguishable decoy states [10.66830089114367]
We find the external modulation of different intensity states through the test, required in those TF-QKD with post-phase compensation, shows a side channel in frequency domain.
We propose a complete and undetected eavesdropping attack, named passive frequency shift attack, on sending or not-sending TF-QKD protocol.
Our results emphasize the importance of practical security at source and might provide a valuable reference for the practical implementation of TF-QKD.
arXiv Detail & Related papers (2021-01-27T09:37:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.