論文の概要: On Statistical Bias In Active Learning: How and When To Fix It
- arxiv url: http://arxiv.org/abs/2101.11665v1
- Date: Wed, 27 Jan 2021 19:52:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-01 19:21:58.731221
- Title: On Statistical Bias In Active Learning: How and When To Fix It
- Title(参考訳): アクティブラーニングにおける統計的バイアスについて:その修正の方法とタイミング
- Authors: Sebastian Farquhar, Yarin Gal, Tom Rainforth
- Abstract要約: データのラベル付けが高価な場合には,アクティブな学習が強力なツールになります。
トレーニングデータはもはや人口分布に従わないため、バイアスが発生します。
このバイアスを形式化し、有害であり、時には役に立つ状況を調査します。
- 参考スコア(独自算出の注目度): 42.768124675364376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active learning is a powerful tool when labelling data is expensive, but it
introduces a bias because the training data no longer follows the population
distribution. We formalize this bias and investigate the situations in which it
can be harmful and sometimes even helpful. We further introduce novel
corrective weights to remove bias when doing so is beneficial. Through this,
our work not only provides a useful mechanism that can improve the active
learning approach, but also an explanation of the empirical successes of
various existing approaches which ignore this bias. In particular, we show that
this bias can be actively helpful when training overparameterized models --
like neural networks -- with relatively little data.
- Abstract(参考訳): アクティブラーニングは、データラベリングが高価である場合の強力なツールであるが、トレーニングデータが人口分布に従わないため、バイアスをもたらす。
このバイアスを形式化し、有害であり、時には役に立つ状況を調査します。
さらに,新たな補正重みを導入して,バイアスを取り除くことが有益である。
これを通じて,本研究は,アクティブラーニングアプローチを改善する有用なメカニズムを提供するだけでなく,このバイアスを無視する様々な既存アプローチの実証的成功を説明する。
特に、このバイアスは、比較的少ないデータで過度にパラメータ化されたモデル(例えばニューラルネットワーク)をトレーニングするときに有効であることを示す。
関連論文リスト
- Model Debiasing by Learnable Data Augmentation [19.625915578646758]
本稿では,トレーニングを正規化可能なデータ拡張戦略を備えた,新しい2段階学習パイプラインを提案する。
合成および現実的なバイアス付きデータセットの実験は、最先端の分類精度を示し、競合する手法より優れている。
論文 参考訳(メタデータ) (2024-08-09T09:19:59Z) - Improving Bias Mitigation through Bias Experts in Natural Language
Understanding [10.363406065066538]
補助モデルと主モデルの間に二項分類器を導入するデバイアス化フレームワークを提案する。
提案手法は補助モデルのバイアス識別能力を向上させる。
論文 参考訳(メタデータ) (2023-12-06T16:15:00Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
我々は、データに基づいてトレーニングされたモデルに、データのスプリアスパターンが現れるかどうかを調べるために、新しい統計手法を用いる。
トレーニングデータに*reweight*に最適化アプローチを適用し、数千のスプリアス相関を低減します。
驚くべきことに、この方法ではトレーニングデータの語彙バイアスを低減できますが、トレーニングされたモデルで対応するバイアスの強い証拠がまだ見つかっていません。
論文 参考訳(メタデータ) (2023-06-03T20:12:27Z) - An Exploration of How Training Set Composition Bias in Machine Learning
Affects Identifying Rare Objects [0.0]
まれなクラスの例を誇張して無視されないようにするのが一般的である。
また、ソースタイプのバランスがほぼ等しくなるような制限されたデータでトレーニングする練習も頻繁に行われます。
ここでは、これらのプラクティスが、過剰な割り当てソースからレアクラスのモデルに偏りがあることを示します。
論文 参考訳(メタデータ) (2022-07-07T10:26:55Z) - Unsupervised Learning of Unbiased Visual Representations [10.871587311621974]
ディープニューラルネットワークは、データセットにバイアスが存在するときに堅牢な表現を学習できないことで知られている。
我々は3つのステップからなる完全に教師なしの脱バイアスフレームワークを提案する。
我々は、非バイアスモデルを得るために最先端の教師付き脱バイアス技術を採用している。
論文 参考訳(メタデータ) (2022-04-26T10:51:50Z) - Pseudo Bias-Balanced Learning for Debiased Chest X-ray Classification [57.53567756716656]
本研究では, バイアスラベルを正確に把握せず, 脱バイアス胸部X線診断モデルの開発について検討した。
本稿では,まずサンプルごとのバイアスラベルをキャプチャし,予測する新しいアルゴリズム,擬似バイアスバランス学習を提案する。
提案手法は他の最先端手法よりも一貫した改善を実現した。
論文 参考訳(メタデータ) (2022-03-18T11:02:18Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
最先端自然言語処理(NLP)モデルは、意図したタスクをターゲットとする機能ではなく、データセットのバイアスや表面形状の相関をモデル化することを学ぶことが多い。
これまでの研究は、バイアスに関する知識が利用できる場合に、これらの問題を回避するための効果的な方法を示してきた。
本稿では,これらの問題点を無視する学習モデルについて述べる。
論文 参考訳(メタデータ) (2020-12-02T16:10:54Z) - Improving Robustness by Augmenting Training Sentences with
Predicate-Argument Structures [62.562760228942054]
データセットバイアスに対するロバスト性を改善する既存のアプローチは、主にトレーニング目標の変更に焦点を当てている。
本稿では,学習データ中の入力文に対応する述語句構造を付加することを提案する。
特定のバイアスを対象とせずに、文の増大は、複数のバイアスに対してトランスフォーマーモデルの堅牢性を向上することを示す。
論文 参考訳(メタデータ) (2020-10-23T16:22:05Z) - Learning from Failure: Training Debiased Classifier from Biased
Classifier [76.52804102765931]
ニューラルネットワークは、所望の知識よりも学習が簡単である場合にのみ、素早い相関に依存することを学習していることを示す。
本稿では,一対のニューラルネットワークを同時にトレーニングすることで,障害に基づくデバイアス化手法を提案する。
本手法は,合成データセットと実世界のデータセットの両方において,各種バイアスに対するネットワークのトレーニングを大幅に改善する。
論文 参考訳(メタデータ) (2020-07-06T07:20:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。