論文の概要: Neural networks for Anatomical Therapeutic Chemical (ATC)
- arxiv url: http://arxiv.org/abs/2101.11713v1
- Date: Fri, 22 Jan 2021 19:49:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-20 17:14:19.931398
- Title: Neural networks for Anatomical Therapeutic Chemical (ATC)
- Title(参考訳): 解剖学的治療化学(ATC)のためのニューラルネットワーク
- Authors: Loris Nanni, Alessandra Lumini and Sheryl Brahnam
- Abstract要約: 両方向の長期記憶ネットワーク(BiLSTM)から抽出された集合を含む、特徴の異なるセットで訓練された複数の複数ラベル分類器を組み合わせることを提案する。
実験はこのアプローチのパワーを実証し、文献で報告された最良の手法よりも優れていることを示した。
- 参考スコア(独自算出の注目度): 83.73971067918333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivation: Automatic Anatomical Therapeutic Chemical (ATC) classification is
a critical and highly competitive area of research in bioinformatics because of
its potential for expediting drug develop-ment and research. Predicting an
unknown compound's therapeutic and chemical characteristics ac-cording to how
these characteristics affect multiple organs/systems makes automatic ATC
classifica-tion a challenging multi-label problem. Results: In this work, we
propose combining multiple multi-label classifiers trained on distinct sets of
features, including sets extracted from a Bidirectional Long Short-Term Memory
Network (BiLSTM). Experiments demonstrate the power of this approach, which is
shown to outperform the best methods reported in the literature, including the
state-of-the-art developed by the fast.ai research group. Availability: All
source code developed for this study is available at
https://github.com/LorisNanni. Contact: loris.nanni@unipd.it
- Abstract(参考訳): 動機:atc(automatic anatomical therapeutic chemical)分類は、薬物開発と研究の迅速化の可能性から、バイオインフォマティクスの研究において重要かつ競争性の高い分野である。
これらの特徴が複数の臓器やシステムにどのように影響するかによって、未知の化合物の治療的および化学的特性を予測することにより、自動ATC分類が課題となる。
結果:本稿では,双方向長短期記憶ネットワーク(bilstm)から抽出したセットを含む,特徴の異なるセットで学習された複数のマルチラベル分類器を組み合わせることを提案する。
実験はこのアプローチの力を示し、Fast.ai研究グループによって開発された最先端技術を含む、文献で報告された最良の手法を上回ります。
可用性: この研究のために開発されたすべてのソースコードはhttps://github.com/LorisNanni.comで入手できる。
連絡先:loris.nanni@unipd.it
関連論文リスト
- Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - A Marker-based Neural Network System for Extracting Social Determinants
of Health [12.6970199179668]
健康の社会的決定因子(SDoH)は、患者の医療の質と格差を左右する。
多くのSDoHアイテムは、電子健康記録の構造化形式でコード化されていない。
我々は,臨床ノートから自動的にSDoH情報を抽出する,名前付きエンティティ認識(NER),関係分類(RC),テキスト分類手法を含む多段階パイプラインを探索する。
論文 参考訳(メタデータ) (2022-12-24T18:40:23Z) - BioRED: A Comprehensive Biomedical Relation Extraction Dataset [6.915371362219944]
我々は,複数の実体型と関係対を持つ第一種バイオメディカルREコーパスであるBioREDを提示する。
それぞれの関係を、新しい発見知識または以前に知られていた背景知識を記述するものとしてラベル付けし、自動化アルゴリズムが新規情報と背景情報を区別できるようにする。
以上の結果から,既存の手法は NER タスクでは高い性能が得られるが,RE タスクには多くの改善の余地があることが示唆された。
論文 参考訳(メタデータ) (2022-04-08T19:23:49Z) - DeepDDS: deep graph neural network with attention mechanism to predict
synergistic drug combinations [0.9854322576538699]
計算スクリーニングは 薬物の組み合わせを優先する重要な方法になっています
DeepDDSは16%以上の予測精度で競合手法よりも優れていた。
論文 参考訳(メタデータ) (2021-07-06T08:25:43Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Stochastic-based Neural Network hardware acceleration for an efficient
ligand-based virtual screening [0.6431253679501663]
仮想スクリーニングは、治療対象の生物活性を示す可能性が最も高い分子化合物の同定方法を研究する。
大量の小さな有機化合物と、このような大規模なスクリーニングを行う可能性のある数千のターゲットにより、分子データベースのスクリーニングにおける処理速度とエネルギー効率の両方を向上する研究コミュニティへの関心が高まっている。
本研究では,各分子を1つのエネルギーベースベクトルで記述した分類モデルを提案し,ANNを用いた機械学習システムを提案する。
論文 参考訳(メタデータ) (2020-06-03T20:18:15Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z) - Exemplar Auditing for Multi-Label Biomedical Text Classification [0.4873362301533824]
我々は、最近提案されたゼロショットシーケンスラベリング手法「畳み込み分解による教師付きラベリング」を一般化する。
この手法は"イントロスペクション(introspection)"と分類され、推論時間予測のきめ細かい特徴を最も近い隣人に関連付ける。
提案手法は,医療従事者に対して,モデルの予測を駆動する健全な特徴を理解する上で,競争力のある分類モデルと尋問メカニズムの両方を提供する。
論文 参考訳(メタデータ) (2020-04-07T02:54:20Z) - Adversarial Feature Hallucination Networks for Few-Shot Learning [84.31660118264514]
Adversarial Feature Hallucination Networks (AFHN) は条件付き Wasserstein Generative Adversarial Network (cWGAN) に基づいている。
合成された特徴の識別性と多様性を促進するために、2つの新規レギュレータがAFHNに組み込まれている。
論文 参考訳(メタデータ) (2020-03-30T02:43:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。