論文の概要: "This item is a glaxefw, and this is a glaxuzb": Compositionality
Through Language Transmission, using Artificial Neural Networks
- arxiv url: http://arxiv.org/abs/2101.11739v1
- Date: Wed, 27 Jan 2021 23:08:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-02 04:38:01.861546
- Title: "This item is a glaxefw, and this is a glaxuzb": Compositionality
Through Language Transmission, using Artificial Neural Networks
- Title(参考訳): 「この記事はglaxefwで、これはglaxuzbです」:人工ニューラルネットワークを用いた言語伝達による構成性
- Authors: Hugh Perkins
- Abstract要約: 人工ニューラルネットワークのための反復学習モデル(ILM)のアーキテクチャとプロセスを提案する。
ILMはDCGと同じ明確な構成性をもたらすのではなく、ホールドアウト精度とトポロジカルな類似性によって測定されるように、構成性は緩やかに改善されることを示す。
- 参考スコア(独自算出の注目度): 0.30458514384586405
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an architecture and process for using the Iterated Learning Model
("ILM") for artificial neural networks. We show that ILM does not lead to the
same clear compositionality as observed using DCGs, but does lead to a modest
improvement in compositionality, as measured by holdout accuracy and topologic
similarity. We show that ILM can lead to an anti-correlation between holdout
accuracy and topologic rho. We demonstrate that ILM can increase
compositionality when using non-symbolic high-dimensional images as input.
- Abstract(参考訳): 本稿では,ニューラルネットワークのための反復学習モデル(ilm)を用いたアーキテクチャとプロセスを提案する。
ILMはDCGと同じ明確な構成性をもたらすのではなく、ホールドアウト精度とトポロジカルな類似性によって測定されるように、構成性は緩やかに改善されることを示す。
ILMは、保留精度とトポロジカルローの反相関につながる可能性があることを示した。
非記号的高次元像を入力として使用する場合、ILMは構成性を向上させることができることを示す。
関連論文リスト
- Retinal OCT Synthesis with Denoising Diffusion Probabilistic Models for
Layer Segmentation [2.4113205575263708]
本稿では,拡散確率モデル(DDPM)を用いて網膜光コヒーレンス断層撮影(OCT)画像を自動的に生成する画像合成手法を提案する。
階層分割の精度を一貫して改善し,様々なニューラルネットワークを用いて検証する。
これらの結果から,網膜CT画像の手動アノテーションの必要性が軽減される可能性が示唆された。
論文 参考訳(メタデータ) (2023-11-09T16:09:24Z) - On the Relation between Internal Language Model and Sequence Discriminative Training for Neural Transducers [52.88268942796418]
内部言語モデル(ILM)のサブトラクションは、RNN-Transducerの性能向上に広く応用されている。
列識別訓練は, 理論的, 経験的両面からILMサブトラクションと強く相関していることを示す。
論文 参考訳(メタデータ) (2023-09-25T13:35:28Z) - Representation Learning with Diffusion Models [0.0]
拡散モデル (DM) は画像合成タスクや密度推定において最先端の結果を得た。
拡散モデル(LRDM)を用いてそのような表現を学習するためのフレームワークを提案する。
特に、DMと表現エンコーダは、生成的認知過程に特有の豊かな表現を学習するために、共同で訓練される。
論文 参考訳(メタデータ) (2022-10-20T07:26:47Z) - Signal Processing for Implicit Neural Representations [80.38097216996164]
Inlicit Neural Representation (INR)は、マルチ層パーセプトロンを介して連続したマルチメディアデータを符号化する。
既存の作業は、その離散化されたインスタンスの処理を通じて、そのような連続的な表現を操作する。
本稿では,INSP-Netと呼ばれる暗黙的ニューラル信号処理ネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-17T06:29:07Z) - Insights on Neural Representations for End-to-End Speech Recognition [28.833851817220616]
エンドツーエンド自動音声認識(ASR)モデルは、一般化された音声表現を学習することを目的としている。
相関解析手法を用いたネットワーク類似性の調査は、エンド・ツー・エンドASRモデルでは行われていない。
本稿では,CNN,LSTM,Transformerをベースとしたトレーニングにおいて,レイヤ間の内部ダイナミクスを解析し,検討する。
論文 参考訳(メタデータ) (2022-05-19T10:19:32Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - Grassmannian learning mutual subspace method for image set recognition [43.24089871099157]
本稿では,画像の集合を入力とするオブジェクト認識の問題に対処する(例えば,複数のカメラソースとビデオフレーム)。
本稿では,CNN上に埋め込まれたNN層であるG-LMSM(Grassmannian Learning mutual subspace method)を提案する。
提案手法は,手形認識,顔の識別,顔の感情認識における有効性を示す。
論文 参考訳(メタデータ) (2021-11-08T09:16:36Z) - Can we learn gradients by Hamiltonian Neural Networks? [68.8204255655161]
本稿では,勾配を学習するODEニューラルネットワークに基づくメタラーナを提案する。
提案手法は,LLUアクティベーションを最適化したMLMとMNISTデータセットにおいて,LSTMに基づくメタラーナーよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-10-31T18:35:10Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Spatial Dependency Networks: Neural Layers for Improved Generative Image
Modeling [79.15521784128102]
画像生成装置(デコーダ)を構築するための新しいニューラルネットワークを導入し、可変オートエンコーダ(VAE)に適用する。
空間依存ネットワーク(sdns)では、ディープニューラルネットの各レベルにおける特徴マップを空間的にコヒーレントな方法で計算する。
空間依存層による階層型vaeのデコーダの強化は密度推定を大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-03-16T07:01:08Z) - CNN Detection of GAN-Generated Face Images based on Cross-Band
Co-occurrences Analysis [34.41021278275805]
最終世代のGANモデルでは、自然と視覚的に区別できない合成画像を生成することができる。
本稿では、スペクトル帯域間の不整合を利用して、自然画像とGAN生成物を区別する手法を提案する。
論文 参考訳(メタデータ) (2020-07-25T10:55:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。