論文の概要: A Taxonomy of Explainable Bayesian Networks
- arxiv url: http://arxiv.org/abs/2101.11844v1
- Date: Thu, 28 Jan 2021 07:29:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-01-31 22:52:25.295930
- Title: A Taxonomy of Explainable Bayesian Networks
- Title(参考訳): 説明可能なベイズネットワークの分類
- Authors: Iena Petronella Derks and Alta de Waal
- Abstract要約: ベイズネットワークにおける説明可能性の分類について紹介する。
我々は、モデルにおける説明可能性の既存の分類、推論または証拠を拡張して、決定の説明を含める。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence (AI), and in particular, the explainability thereof,
has gained phenomenal attention over the last few years. Whilst we usually do
not question the decision-making process of these systems in situations where
only the outcome is of interest, we do however pay close attention when these
systems are applied in areas where the decisions directly influence the lives
of humans. It is especially noisy and uncertain observations close to the
decision boundary which results in predictions which cannot necessarily be
explained that may foster mistrust among end-users. This drew attention to AI
methods for which the outcomes can be explained. Bayesian networks are
probabilistic graphical models that can be used as a tool to manage
uncertainty. The probabilistic framework of a Bayesian network allows for
explainability in the model, reasoning and evidence. The use of these methods
is mostly ad hoc and not as well organised as explainability methods in the
wider AI research field. As such, we introduce a taxonomy of explainability in
Bayesian networks. We extend the existing categorisation of explainability in
the model, reasoning or evidence to include explanation of decisions. The
explanations obtained from the explainability methods are illustrated by means
of a simple medical diagnostic scenario. The taxonomy introduced in this paper
has the potential not only to encourage end-users to efficiently communicate
outcomes obtained, but also support their understanding of how and, more
importantly, why certain predictions were made.
- Abstract(参考訳): 人工知能(AI)、特にその説明可能性は、ここ数年で驚異的な注目を集めています。
結果のみが関心のある状況では、通常はこれらのシステムの意思決定プロセスに疑問を呈さないが、決定が人間の生活に直接影響を及ぼす領域において、これらのシステムが適用される場合には、注意を払っている。
特に、エンドユーザー間の不信感を助長する可能性のある必ずしも説明できない予測を導く決定境界の近くで不確実で不確定な観察である。
これにより、結果を説明できるAI手法に注意が向けられた。
ベイズネットワークは、不確実性を管理するツールとして使用できる確率的グラフィカルモデルである。
ベイジアンネットワークの確率的枠組みは、モデル、推論、および証拠の説明可能性を可能にします。
これらの手法の使用は、主にアドホックであり、より広いAI研究分野における説明可能性の方法ほど組織化されていない。
そこで,ベイズネットワークにおける説明可能性の分類を導入した。
モデルにおける説明可能性の既存の分類、推論、または決定の説明を含む証拠を拡張します。
説明可能性法から得られた説明は, 簡単な診断シナリオを用いて説明する。
本論文で導入された分類学は, エンドユーザーに対して, 結果の効率的な伝達を促すだけでなく, 特定の予測が下された理由の理解を支援する可能性を持っている。
関連論文リスト
- Relevant Irrelevance: Generating Alterfactual Explanations for Image Classifiers [11.200613814162185]
本稿では,ブラックボックス画像分類器の再現的説明の実現可能性を示す。
ニューラルネットワークに基づくブラックボックスモデルにこのアイデアを適用することが可能であることを初めて示します。
論文 参考訳(メタデータ) (2024-05-08T11:03:22Z) - Gaussian Mixture Models for Affordance Learning using Bayesian Networks [50.18477618198277]
Affordancesはアクション、オブジェクト、エフェクト間の関係の基本的な記述である。
本稿では,世界を探究し,その感覚経験から自律的にこれらの余裕を学習するエンボディエージェントの問題にアプローチする。
論文 参考訳(メタデータ) (2024-02-08T22:05:45Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
機械学習モデル構築の実践シナリオにおいて、説明が人間の意思決定を改善するかどうかを評価する。
驚いたことに、サリエンシマップが提供されたとき、タスクが大幅に改善されたという証拠は見つからなかった。
以上の結果から,サリエンシに基づく説明における誤解の可能性と有用性について注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2023-12-10T23:13:23Z) - How Well Do Feature-Additive Explainers Explain Feature-Additive
Predictors? [12.993027779814478]
LIME、SHAP、SHAPR、MAPLE、PDPといった人気機能付加型推論器は、機能付加型予測器を説明できるだろうか?
本稿では,モデルの加法構造から解析的に導出される基底真理について,そのような説明を行う。
以上の結果から,全ての説明者が機能の重要性を正しく評価できないことが示唆された。
論文 参考訳(メタデータ) (2023-10-27T21:16:28Z) - Human Trajectory Forecasting with Explainable Behavioral Uncertainty [63.62824628085961]
人間の軌道予測は人間の行動を理解し予測し、社会ロボットから自動運転車への応用を可能にする。
モデルフリー手法は予測精度が優れているが説明可能性に欠ける一方、モデルベース手法は説明可能性を提供するが、よく予測できない。
BNSP-SFMは,11種類の最先端手法と比較して,予測精度を最大50%向上することを示す。
論文 参考訳(メタデータ) (2023-07-04T16:45:21Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
2階説明可能なAI(SOXAI)は、最近インスタンスレベルからデータセットレベルまで説明可能なAI(XAI)を拡張するために提案されている。
そこで本研究では,SOXAIの動作可能な洞察に基づくトレーニングセットから無関係な概念を除外することで,モデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T23:24:01Z) - Explanatory Paradigms in Neural Networks [18.32369721322249]
本稿では、推論に基づく質問に対する解答として説明を考慮し、ニューラルネットワークにおける説明可能性の研究に飛躍的に拡張する。
これらの質問に対する回答は, それぞれ, 相関, 反事実, 対照的な説明である。
この用語は、訓練されたニューラルネットワークが決定を下した後に、説明的手法が$P$を説明したとき、ホック後の説明可能性の特定のケースを指す。
論文 参考訳(メタデータ) (2022-02-24T00:22:11Z) - A Bayesian Framework for Information-Theoretic Probing [51.98576673620385]
我々は、探索は相互情報を近似するものとみなすべきであると論じる。
これは、表現が元の文とターゲットタスクに関する全く同じ情報をエンコードしているというかなり直感的な結論を導いた。
本稿では,ベイズ的相互情報(Bayesian mutual information)と呼ぶものを測定するための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-09-08T18:08:36Z) - How Much Can I Trust You? -- Quantifying Uncertainties in Explaining
Neural Networks [19.648814035399013]
説明可能なAI(XAI)は、ディープニューラルネットワークなどの学習マシンが生成した予測の解釈を提供することを目的としている。
ニューラルネットワークの任意の説明法をベイズニューラルネットワークの説明法に変換するための新しいフレームワークを提案する。
様々な実験において,本手法の有効性と有用性を示す。
論文 参考訳(メタデータ) (2020-06-16T08:54:42Z) - An Incremental Explanation of Inference in Hybrid Bayesian Networks for
Increasing Model Trustworthiness and Supporting Clinical Decision Making [0.0]
臨床医は、予測を理解し、信頼できるなら、モデルを使う可能性が高い。
ベイズネットワーク(BN)モデルはブラックボックスではないという利点があり、その理由を説明することができる。
本稿では,ハイブリッドBNに適用可能な推論の漸進的な説明を提案する。
論文 参考訳(メタデータ) (2020-03-05T13:22:23Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。