論文の概要: Development of a Vertex Finding Algorithm using Recurrent Neural Network
- arxiv url: http://arxiv.org/abs/2101.11906v5
- Date: Sat, 19 Nov 2022 08:34:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-13 11:47:11.608336
- Title: Development of a Vertex Finding Algorithm using Recurrent Neural Network
- Title(参考訳): リカレントニューラルネットワークを用いた頂点探索アルゴリズムの開発
- Authors: Kiichi Goto, Taikan Suehara, Tamaki Yoshioka, Masakazu Kurata, Hajime
Nagahara, Yuta Nakashima, Noriko Takemura, Masako Iwasaki
- Abstract要約: 我々は新しいアルゴリズムを開発した。
国際線形衝突型加速器のような将来のレプトン衝突型加速器の頂点発見
私たちは2つのネットワークをデプロイしています。
vertexはトラックペアからシードされ、もう1つはカスタマイズされたリカレントニューラルネットワークだ。
トラックとトラックを関連付けるためのアテンション機構とエンコーダ・デコーダ構造。
頂点種
- 参考スコア(独自算出の注目度): 17.336700234290294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning is a rapidly-evolving technology with possibility to
significantly improve physics reach of collider experiments. In this study we
developed a novel algorithm of vertex finding for future lepton colliders such
as the International Linear Collider. We deploy two networks; one is simple
fully-connected layers to look for vertex seeds from track pairs, and the other
is a customized Recurrent Neural Network with an attention mechanism and an
encoder-decoder structure to associate tracks to the vertex seeds. The
performance of the vertex finder is compared with the standard ILC
reconstruction algorithm.
- Abstract(参考訳): ディープラーニングは急速に進化する技術であり、衝突型加速器実験の物理学的到達範囲を大幅に改善する可能性がある。
本研究では,国際線形衝突型加速器のような将来のレプトン衝突型加速器の頂点探索アルゴリズムを開発した。
1つはトラックペアから頂点シードを探すための単純な完全接続層であり、もう1つは注意機構とエンコーダ・デコーダ構造を備えたカスタマイズされたリカレントニューラルネットワークであり、トラックを頂点シードに関連付ける。
頂点ファインダの性能を標準のICC再構成アルゴリズムと比較する。
関連論文リスト
- Active search and coverage using point-cloud reinforcement learning [50.741409008225766]
本稿では,目的探索とカバレッジのためのエンドツーエンドの深層強化学習ソリューションを提案する。
RLの深い階層的特徴学習は有効であり、FPS(Fastthest Point sample)を用いることで点数を削減できることを示す。
また、ポイントクラウドに対するマルチヘッドの注意がエージェントの学習を高速化する上で有効であるが、同じ結果に収束することを示す。
論文 参考訳(メタデータ) (2023-12-18T18:16:30Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
バイレベル最適化は、幅広い機械学習モデルに適用されている。
既存のアルゴリズムの多くは、分散データを扱うことができないように、シングルマシンの設定を制限している。
そこで我々は,勾配追跡通信機構と2つの異なる勾配に基づく分散二段階最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-06-30T05:29:52Z) - On the Power of Gradual Network Alignment Using Dual-Perception
Similarities [14.779474659172923]
ネットワークアライメント(NA)は、ネットワーク構造とノード属性に基づいて、2つのネットワーク間のノードの対応を見つけるタスクである。
我々の研究は、既存のNA手法のほとんどが一度に全てのノード対を発見しようとしたため、ノード対応の暫定的な発見によって得られた情報を利用していないという事実に動機づけられている。
強い一貫性を示すノード対をフル活用することにより、ノード対を徐々に発見する新しいNA法であるGrad-Alignを提案する。
論文 参考訳(メタデータ) (2022-01-26T14:01:32Z) - Search For Deep Graph Neural Networks [4.3002928862077825]
現在のGNN指向NAS法は、浅い単純なアーキテクチャを持つ異なる層集約コンポーネントの探索に重点を置いている。
本稿では,新しい2段階探索空間を持つGNN生成パイプラインを提案する。
実世界のデータセットの実験では、生成したGNNモデルは、既存の手動設計やNASベースのモデルよりも優れています。
論文 参考訳(メタデータ) (2021-09-21T09:24:59Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
我々は,情報理論に根ざし,計算神経科学に発達した効率的な符号化原理を採用することを提案する。
スパース符号化は出力信号のエントロピーを効果的に最大化できることを示す。
公開画像分類データセットを用いた実験により,提案アルゴリズムでスクラッチから学習した構造を用いて,最も優れた専門家設計構造に匹敵する分類精度が得られることを示した。
論文 参考訳(メタデータ) (2021-05-27T12:27:24Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
位相検索は現代の計算イメージングシステムにおいて重要な要素である。
近年のディープラーニングの進歩は、堅牢で高速なPRの新たな可能性を開いた。
我々は、既存の制限を克服するために、深層展開のための新しいフレームワークを開発する。
論文 参考訳(メタデータ) (2021-01-12T08:36:23Z) - Neural Architecture Search as Sparse Supernet [78.09905626281046]
本稿では,単一パスと複数パスの探索から混合パスの自動探索へ,ニューラルネットワーク探索(NAS)の問題を拡大することを目的とする。
我々はNAS問題をスパース・スーパーネットとして,空間制約を混合した新しい連続アーキテクチャ表現を用いてモデル化する。
スパーススーパーネットは、コンパクトなノードセット上でスパース混合パスを自動的に達成する。
論文 参考訳(メタデータ) (2020-07-31T14:51:52Z) - A Quantum Graph Neural Network Approach to Particle Track Reconstruction [1.087475836765689]
本稿では,初期単純化ツリーネットワーク(TTN)モデルの低精度化を克服するために,反復的アプローチによる改良モデルを提案する。
我々は、量子コンピューティングの能力を活用して、非常に多くの状態を同時に評価し、それによって、大きなパラメータ空間を効果的に探索することを目指している。
論文 参考訳(メタデータ) (2020-07-14T07:25:24Z) - Learning to Hash with Graph Neural Networks for Recommender Systems [103.82479899868191]
グラフ表現学習は、大規模に高品質な候補探索をサポートすることに多くの注目を集めている。
ユーザ・イテム相互作用ネットワークにおけるオブジェクトの埋め込みベクトルの学習の有効性にもかかわらず、連続的な埋め込み空間におけるユーザの好みを推測する計算コストは膨大である。
連続的かつ離散的なコードとを協調的に学習するための,単純かつ効果的な離散表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-04T06:59:56Z) - Exploring the Connection Between Binary and Spiking Neural Networks [1.329054857829016]
両立ニューラルネットワークとスパイクニューラルネットワークの訓練における最近のアルゴリズムの進歩を橋渡しする。
極端量子化システムにおけるスパイキングニューラルネットワークのトレーニングは,大規模データセット上でのほぼ完全な精度向上をもたらすことを示す。
論文 参考訳(メタデータ) (2020-02-24T03:46:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。