論文の概要: An Explainable AI System for Automated COVID-19 Assessment and Lesion
Categorization from CT-scans
- arxiv url: http://arxiv.org/abs/2101.11943v1
- Date: Thu, 28 Jan 2021 11:47:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-01-31 20:06:42.144938
- Title: An Explainable AI System for Automated COVID-19 Assessment and Lesion
Categorization from CT-scans
- Title(参考訳): CTスキャンによるCOVID-19自動評価と病変分類のための説明可能なAIシステム
- Authors: Matteo Pennisi, Isaak Kavasidis, Concetto Spampinato, Vincenzo
Schinin\`a, Simone Palazzo, Francesco Rundo, Massimo Cristofaro, Paolo
Campioni, Elisa Pianura, Federica Di Stefano, Ada Petrone, Fabrizio
Albarello, Giuseppe Ippolito, Salvatore Cuzzocrea, Sabrina Conoci
- Abstract要約: SARS-CoV-2病原体による新型コロナウイルス感染症は、世界中で壊滅的なパンデミックである。
深層学習パラダイムに基づくAIを用いたパイプラインを提案し,CTスキャンによるCOVID-19検出と病変分類を自動化した。
- 参考スコア(独自算出の注目度): 8.694504007704994
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: COVID-19 infection caused by SARS-CoV-2 pathogen is a catastrophic pandemic
outbreak all over the world with exponential increasing of confirmed cases and,
unfortunately, deaths. In this work we propose an AI-powered pipeline, based on
the deep-learning paradigm, for automated COVID-19 detection and lesion
categorization from CT scans. We first propose a new segmentation module aimed
at identifying automatically lung parenchyma and lobes. Next, we combined such
segmentation network with classification networks for COVID-19 identification
and lesion categorization. We compare the obtained classification results with
those obtained by three expert radiologists on a dataset consisting of 162 CT
scans. Results showed a sensitivity of 90\% and a specificity of 93.5% for
COVID-19 detection, outperforming those yielded by the expert radiologists, and
an average lesion categorization accuracy of over 84%. Results also show that a
significant role is played by prior lung and lobe segmentation that allowed us
to enhance performance by over 20 percent points. The interpretation of the
trained AI models, moreover, reveals that the most significant areas for
supporting the decision on COVID-19 identification are consistent with the
lesions clinically associated to the virus, i.e., crazy paving, consolidation
and ground glass. This means that the artificial models are able to
discriminate a positive patient from a negative one (both controls and patients
with interstitial pneumonia tested negative to COVID) by evaluating the
presence of those lesions into CT scans. Finally, the AI models are integrated
into a user-friendly GUI to support AI explainability for radiologists, which
is publicly available at http://perceivelab.com/covid-ai.
- Abstract(参考訳): SARS-CoV-2病原体によって引き起こされるCOVID-19感染は、確認された症例の指数関数的に増加し、残念ながら、世界中の壊滅的なパンデミックの発生です。
本研究では、CTスキャンから自動COVID-19検出と病変分類を行うためのディープラーニングパラダイムに基づくAI駆動パイプラインを提案する。
まず,肺小葉と葉を自動的に同定する新しいセグメンテーションモジュールを提案する。
次に、このようなセグメンテーションネットワークと、COVID-19の同定と病変分類のための分類ネットワークを組み合わせる。
162個のctスキャンデータから得られた分類結果と3人の専門家放射線科医による分類結果を比較した。
その結果、90%の感度と93.5%の特異性を示し、専門家の放射線学者による感度よりも優れ、84%以上の病変分類精度が得られた。
また,前肺と葉の分画によって重要な役割が果たされ,20%以上のパフォーマンスが向上した。
訓練されたAIモデルの解釈は、さらに、新型コロナウイルスの同定に関する決定を支援するための最も重要な領域は、ウイルス、すなわち狂気の舗装、統合および接地ガラスに臨床的に関連した病変と一致していることを明らかにする。
これは、人工モデルが陰性患者(コントロールと間質性肺炎患者の両方が新型コロナウイルスに陰性である)をCTスキャンで評価することで、正の患者を識別することができることを意味している。
最後に、AIモデルはユーザーフレンドリーなGUIに統合され、放射線科医のためのAI説明性をサポートする。
関連論文リスト
- Enhancing COVID-19 Severity Analysis through Ensemble Methods [13.792760290422185]
本稿では、新型コロナウイルス患者の感染症領域を抽出するためのドメイン知識に基づくパイプラインを提案する。
感染の重症度は、3つの機械学習モデルのアンサンブルを使用して異なるカテゴリに分類される。
提案システムは,AI-Enabled Medical Image Analysis WorkshopとCOVID-19診断コンペティションの検証データセットを用いて評価した。
論文 参考訳(メタデータ) (2023-03-13T13:59:47Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
我々はUCADI(Unified CT-COVID AI Diagnostic Initiative)を立ち上げ、各ホスト機関でAIモデルを分散的にトレーニングし、独立して実行することができる。
本研究は,中国とイギリスに所在する23の病院で採取した3,336例の胸部CT9,573例について検討した。
論文 参考訳(メタデータ) (2021-11-18T00:43:41Z) - COVID-Net US: A Tailored, Highly Efficient, Self-Attention Deep
Convolutional Neural Network Design for Detection of COVID-19 Patient Cases
from Point-of-care Ultrasound Imaging [101.27276001592101]
我々は,肺POCUS画像からの新型コロナウイルススクリーニングに適した,高効率で自己注意型の深層畳み込みニューラルネットワーク設計であるCOVID-Net USを紹介した。
実験の結果、提案されたCOVID-Net USは、アーキテクチャの複雑さが353倍、計算の複雑さが62倍、Raspberry Piで14.3倍高速なAUCを達成できることがわかった。
リソース制約のある環境において安価な医療と人工知能を提唱するために、COVID-Net USをオープンソースにし、COVID-Netオープンソースイニシアチブの一部として公開しました。
論文 参考訳(メタデータ) (2021-08-05T16:47:33Z) - COVID-Rate: An Automated Framework for Segmentation of COVID-19 Lesions
from Chest CT Scans [29.266579630983358]
パンデミック時代には、専門家の放射線学者による新型コロナウイルスの肺病変の視覚的評価と定量化が高価になり、エラーが生じる傾向にある。
専門医に注釈を付された82例のCT画像433点を含むオープンアクセス型COVID-19 CTセグメンテーションデータセットについて紹介する。
Deep Neural Network(DNN)ベースのフレームワークであるCOVID-Rateは、胸部CTスキャンからCOVID-19に関連する肺の異常を自律的に分離する。
論文 参考訳(メタデータ) (2021-07-04T03:19:43Z) - Dual-Attention Residual Network for Automatic Diagnosis of COVID-19 [6.941255691176647]
我々は,他の一般的な肺炎患者や正常者から,CT画像を用いてCOVID-19を自動同定する新たな残留ネットワークを提案する。
この方法では、他の2つのクラスと94.7%の精度、93.73%の感度、98.28%の特異性、95.26%のF1スコア、および受信機動作特性曲線(AUC)の0.99の領域を区別することができる。
論文 参考訳(メタデータ) (2021-05-14T11:59:47Z) - COVID-Net CT-2: Enhanced Deep Neural Networks for Detection of COVID-19
from Chest CT Images Through Bigger, More Diverse Learning [70.92379567261304]
胸部CT画像からのCOVID-19検出のための深部ニューラルネットワークであるCOVID-Net CT-2を導入する。
説明力を活用して、COVID-Net CT-2の意思決定行動を調査します。
結果は有望であり、コンピュータ支援型COVID-19アセスメントの有効なツールとして、ディープニューラルネットワークの強い可能性を示唆している。
論文 参考訳(メタデータ) (2021-01-19T03:04:09Z) - COVID-FACT: A Fully-Automated Capsule Network-based Framework for
Identification of COVID-19 Cases from Chest CT scans [29.327290778950324]
我々は「COVID-FACT」と呼ばれる新型コロナウイルス陽性症例の同定のための2段階完全自動化フレームワークを提案する。
COVID-FACTは感染したスライスを検出し、社内CTスキャンデータセットを使用して陽性のCOVID-19患者を特定する。
この実験に基づいて、COVID-FACTは90.82%の精度、94.55%の感度、86.04%の特異度、および0.98のエリアアンダー・ザ・カーブ(AUC)を達成できるが、監督やアノテーションははるかに少ない。
論文 参考訳(メタデータ) (2020-10-30T03:30:22Z) - Automated triage of COVID-19 from various lung abnormalities using chest
CT features [2.4956060473718407]
入力胸部CTをスキャンし、新型コロナウイルスの患者をトリアージする、完全に自動化されたAIベースのシステムを提案する。
肺や感染症の統計、テクスチャ、形状、位置など、さまざまな特徴を生成して、機械学習ベースの分類器を訓練します。
2191例のCTデータセットを用いて本システムの評価を行い,90.8%の感度で85.4%の特異性,94.0%のROC-AUCで堅牢な解を示した。
論文 参考訳(メタデータ) (2020-10-24T19:44:48Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
我々は、胸部CT画像からCOVID-19の症例を検出するのに適した、深層畳み込みニューラルネットワークアーキテクチャであるCOVIDNet-CTを紹介した。
また,中国生体情報センターが収集したCT画像データから得られたベンチマークCT画像データセットであるCOVIDx-CTも紹介した。
論文 参考訳(メタデータ) (2020-09-08T15:49:55Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
我々は、集中治療室入院の必要性を予測するために、人口統計、バイタルサイン、実験室の所見から、肺不透明度の放射能と非画像の特徴を組み合わせる。
また, 地域性肺炎を含む他の肺疾患にも適用できるが, 地域性肺炎に限らない。
論文 参考訳(メタデータ) (2020-07-20T19:08:50Z) - JCS: An Explainable COVID-19 Diagnosis System by Joint Classification
and Segmentation [95.57532063232198]
新型コロナウイルス感染症2019(COVID-19)は、200カ国以上でパンデミックの流行を引き起こしている。
感染を制御するためには、感染した人々を識別し、分離することが最も重要なステップである。
本稿では,新型コロナウイルスの胸部CT診断をリアルタイムかつ説明可能な,新しい関節分類システム(JCS)を開発した。
論文 参考訳(メタデータ) (2020-04-15T12:30:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。