Automated Deep Learning Analysis of Angiography Video Sequences for
Coronary Artery Disease
- URL: http://arxiv.org/abs/2101.12505v1
- Date: Fri, 29 Jan 2021 10:23:49 GMT
- Title: Automated Deep Learning Analysis of Angiography Video Sequences for
Coronary Artery Disease
- Authors: Chengyang Zhou, Thao Vy Dinh, Heyi Kong, Jonathan Yap, Khung Keong
Yeo, Hwee Kuan Lee, Kaicheng Liang
- Abstract summary: The evaluation of obstructions (stenosis) in coronary arteries is currently done by a physician's visual assessment of coronary angiography video sequences.
We report an automated analysis pipeline based on deep learning to rapidly and objectively assess coronary angiograms.
We combined powerful deep learning approaches such as ResNet and U-Net with traditional image processing and geometrical analysis.
- Score: 4.233200689119682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The evaluation of obstructions (stenosis) in coronary arteries is currently
done by a physician's visual assessment of coronary angiography video
sequences. It is laborious, and can be susceptible to interobserver variation.
Prior studies have attempted to automate this process, but few have
demonstrated an integrated suite of algorithms for the end-to-end analysis of
angiograms. We report an automated analysis pipeline based on deep learning to
rapidly and objectively assess coronary angiograms, highlight coronary vessels
of interest, and quantify potential stenosis. We propose a 3-stage automated
analysis method consisting of key frame extraction, vessel segmentation, and
stenosis measurement. We combined powerful deep learning approaches such as
ResNet and U-Net with traditional image processing and geometrical analysis. We
trained and tested our algorithms on the Left Anterior Oblique (LAO) view of
the right coronary artery (RCA) using anonymized angiograms obtained from a
tertiary cardiac institution, then tested the generalizability of our technique
to the Right Anterior Oblique (RAO) view. We demonstrated an overall
improvement on previous work, with key frame extraction top-5 precision of
98.4%, vessel segmentation F1-Score of 0.891 and stenosis measurement 20.7%
Type I Error rate.
Related papers
- YOLO-Angio: An Algorithm for Coronary Anatomy Segmentation [13.603729336413833]
We present our solution to the Automatic Region-based Coronary Artery Disease diagnostics using X-ray angiography images (ARCADE) challenge held at MICCAI 2023.
Our three-stage approach combines preprocessing and feature selection by classical computer vision to enhance vessel contrast.
A final segmentation is based on a logic-based approach to reconstruct the coronary tree in a graph-based sorting method.
arXiv Detail & Related papers (2023-10-24T15:02:02Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++ is an algorithm designed to segment and label the cerebrovascular tree on CTA scans.
We extend the labeling mechanism for the cerebral arteries to identify occluded vessels.
We present the generic concept of iterative systematic search for pathways on all nodes of said model, which enables new interactive features.
arXiv Detail & Related papers (2022-04-26T14:20:26Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - Automatic Identification of the End-Diastolic and End-Systolic Cardiac
Frames from Invasive Coronary Angiography Videos [6.203906656404265]
The identification of proper image frames at the end-diastolic (ED) and end-systolic (ES) frames during the review of invasive coronary angiograms is important.
The current identification method primarily relies on visual interpretation, making it not only time-consuming but also less reproducible.
We propose a new method to automatically identify angiographic image frames associated with the ED and ES cardiac phases by using the trajectories of key vessel points.
arXiv Detail & Related papers (2021-10-06T15:16:55Z) - AI-based Aortic Vessel Tree Segmentation for Cardiovascular Diseases
Treatment: Status Quo [55.04215695343928]
The aortic vessel tree is composed of the aorta and its branching arteries.
We systematically review computing techniques for the automatic and semi-automatic segmentation of the aortic vessel tree.
arXiv Detail & Related papers (2021-08-06T08:18:28Z) - CathAI: Fully Automated Interpretation of Coronary Angiograms Using
Neural Networks [9.963333753481514]
We show for the first time that fully-automated angiogram interpretation to estimate coronary artery stenosis is possible using a sequence of deep neural network algorithms.
The algorithmic pipeline we developed--called CathAI--achieves state-of-the art performance across the sequence of tasks required to accomplish automated interpretation of unselected, real-world angiograms.
arXiv Detail & Related papers (2021-06-14T18:58:09Z) - Automated Detection of Coronary Artery Stenosis in X-ray Angiography
using Deep Neural Networks [0.0]
We propose a two-step deep-learning framework to partially automate the detection of stenosis from X-ray coronary angiography images.
We achieved a 0.97 accuracy on the task of classifying the Left/Right Coronary Artery angle view and 0.68/0.73 recall on the determination of the regions of interest, for LCA and RCA, respectively.
arXiv Detail & Related papers (2021-03-04T11:45:54Z) - A new approach to extracting coronary arteries and detecting stenosis in
invasive coronary angiograms [9.733630514873376]
We aim to develop an automatic algorithm by deep learning to extract coronary arteries from ICAs.
In this study, a multi-input and multi-scale (MIMS) U-Net with a two-stage recurrent training strategy was proposed for the automatic vessel segmentation.
Experimental results demonstrated that the proposed method achieved an average Dice score of 0.8329, an average sensitivity of 0.8281, and an average specificity of 0.9979 in our dataset with 294 ICAs obtained from 73 patient.
arXiv Detail & Related papers (2021-01-25T01:48:27Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.