Automatic Identification of the End-Diastolic and End-Systolic Cardiac
Frames from Invasive Coronary Angiography Videos
- URL: http://arxiv.org/abs/2110.02844v1
- Date: Wed, 6 Oct 2021 15:16:55 GMT
- Title: Automatic Identification of the End-Diastolic and End-Systolic Cardiac
Frames from Invasive Coronary Angiography Videos
- Authors: Yinghui Meng, Minghao Dong, Xumin Dai, Haipeng Tang, Chen Zhao,
Jingfeng Jiang, Shun Xu, Ying Zhou, Fubao Zhu1, Zhihui Xu, Weihua Zhou
- Abstract summary: The identification of proper image frames at the end-diastolic (ED) and end-systolic (ES) frames during the review of invasive coronary angiograms is important.
The current identification method primarily relies on visual interpretation, making it not only time-consuming but also less reproducible.
We propose a new method to automatically identify angiographic image frames associated with the ED and ES cardiac phases by using the trajectories of key vessel points.
- Score: 6.203906656404265
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Automatic identification of proper image frames at the end-diastolic (ED) and
end-systolic (ES) frames during the review of invasive coronary angiograms
(ICA) is important to assess blood flow during a cardiac cycle, reconstruct the
3D arterial anatomy from bi-planar views, and generate the complementary fusion
map with myocardial images. The current identification method primarily relies
on visual interpretation, making it not only time-consuming but also less
reproducible. In this paper, we propose a new method to automatically identify
angiographic image frames associated with the ED and ES cardiac phases by using
the trajectories of key vessel points (i.e. landmarks). More specifically, a
detection algorithm is first used to detect the key points of coronary
arteries, and then an optical flow method is employed to track the trajectories
of the selected key points. The ED and ES frames are identified based on all
these trajectories. Our method was tested with 62 ICA videos from two separate
medical centers (22 and 9 patients in sites 1 and 2, respectively). Comparing
consensus interpretations by two human expert readers, excellent agreement was
achieved by the proposed algorithm: the agreement rates within a one-frame
range were 92.99% and 92.73% for the automatic identification of the ED and ES
image frames, respectively. In conclusion, the proposed automated method showed
great potential for being an integral part of automated ICA image analysis.
Related papers
- Crop and Couple: cardiac image segmentation using interlinked specialist
networks [0.5452923068355806]
We propose a novel strategy that performs segmentation using specialist networks that focus on a single anatomy.
Given an input long-axis cardiac MR image, our method performs a ternary segmentation in the first stage to identify these anatomical regions.
The specialist networks are coupled through an attention mechanism that performs cross-attention to interlink features from different anatomies.
arXiv Detail & Related papers (2024-02-14T13:14:04Z) - A Unified Approach for Comprehensive Analysis of Various Spectral and
Tissue Doppler Echocardiography [3.7775754350457746]
We introduce a novel unified framework using a convolutional neural network for comprehensive analysis of spectral and tissue Doppler echocardiography images.
The network automatically recognizes key features across various Doppler views, with novel Doppler shape embedding and anti-aliasing modules.
Empirical results indicate a consistent outperformance in performance metrics, including dice similarity coefficients (DSC) and intersection over union (IoU)
arXiv Detail & Related papers (2023-11-14T15:10:05Z) - Cardiac Adipose Tissue Segmentation via Image-Level Annotations [8.705311618392368]
We develop a two-stage deep learning framework for cardiac adipose tissue segmentation using image-level annotations on OCT images of human cardiac substrates.
Our study bridges the gap between the demand on automatic tissue analysis and the lack of high-quality pixel-wise annotations.
arXiv Detail & Related papers (2022-06-09T02:55:35Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++ is an algorithm designed to segment and label the cerebrovascular tree on CTA scans.
We extend the labeling mechanism for the cerebral arteries to identify occluded vessels.
We present the generic concept of iterative systematic search for pathways on all nodes of said model, which enables new interactive features.
arXiv Detail & Related papers (2022-04-26T14:20:26Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - Automated Deep Learning Analysis of Angiography Video Sequences for
Coronary Artery Disease [4.233200689119682]
The evaluation of obstructions (stenosis) in coronary arteries is currently done by a physician's visual assessment of coronary angiography video sequences.
We report an automated analysis pipeline based on deep learning to rapidly and objectively assess coronary angiograms.
We combined powerful deep learning approaches such as ResNet and U-Net with traditional image processing and geometrical analysis.
arXiv Detail & Related papers (2021-01-29T10:23:49Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.