論文の概要: Raspberry Pi Based Intelligent Robot that Recognizes and Places Puzzle
Objects
- arxiv url: http://arxiv.org/abs/2101.12584v1
- Date: Wed, 20 Jan 2021 18:58:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-22 04:08:46.028199
- Title: Raspberry Pi Based Intelligent Robot that Recognizes and Places Puzzle
Objects
- Title(参考訳): パズルを認識・配置するraspberry piベースのインテリジェントロボット
- Authors: Yakup Kutlu, Z\"ulf\"u Alanoglu, Ahmet G\"ok\c{c}en, Mustafa Yeniad
- Abstract要約: 非線形2次差分プロット(SODP)は、心不全(CHF)患者の診断に用いられる。
構築システムは,SODPから得られる特徴を持つニューラルネットワーク分類器を用いて,正常およびCHF患者を100%精度で識別できることが示唆された。
- 参考スコア(独自算出の注目度): 1.1470070927586016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study; in order to diagnose congestive heart failure (CHF) patients,
non-linear secondorder difference plot (SODP) obtained from raw 256 Hz sampled
frequency and windowed record with different time of ECG records are used. All
of the data rows are labelled with their belongings to classify much more
realistically. SODPs are divided into different radius of quadrant regions and
numbers of the points fall in the quadrants are computed in order to extract
feature vectors. Fisher's linear discriminant, Naive Bayes, and artificial
neural network are used as classifier. The results are considered in two step
validation methods as general kfold cross-validation and patient based
cross-validation. As a result, it is shown that using neural network classifier
with features obtained from SODP, the constructed system could distinguish
normal and CHF patients with 100% accuracy rate.
- Abstract(参考訳): 本研究では,心不全(chf)患者を診断するために,256hzのサンプル周波数から得られた非線形2次差分プロット(sodp)と,心電図記録の時間が異なるウィンドウ記録を用いた。
すべてのデータ行は、よりリアルに分類するために、その持ち物にラベル付けされます。
sodpは四分域の異なる半径に分割され、四分域の点の数は特徴ベクトルを抽出するために計算される。
フィッシャーの線形判別器、ナイーブベイ、ニューラルネットワークは分類器として用いられる。
結果は, 一般kfoldクロスバリデーションと患者ベースクロスバリデーションの2つのステップ検証法で検討された。
その結果,SODPから得られる特徴を持つニューラルネットワーク分類器を用いて,正常患者とCHF患者を100%精度で識別できることが示唆された。
- 全文 参考訳へのリンク
関連論文リスト
- Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Multi-input segmentation of damaged brain in acute ischemic stroke
patients using slow fusion with skip connection [1.372466817835681]
急性虚血性脳梗塞患者における2つの虚血領域(コアとペナムブラ)を自動分割する方法を提案する。
我々のモデルは、マルチインプットと遅い融合を伴う畳み込み・デコンボリューションのボトルネック構造に基づいている。
提案したアーキテクチャは、神経放射線学者が注釈付けした地上の真実に匹敵する効果的な性能と結果を示す。
論文 参考訳(メタデータ) (2022-03-18T16:26:53Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - An Efficient Epileptic Seizure Detection Technique using Discrete
Wavelet Transform and Machine Learning Classifiers [0.0]
本稿では,離散ウェーブレット変換(DWT)と機械学習分類器を用いたてんかん検出手法を提案する。
DWTは、周波数帯域の異なる信号のより良い分解を提供するため、特徴抽出に使われてきた。
論文 参考訳(メタデータ) (2021-09-26T18:30:04Z) - Detecting Handwritten Mathematical Terms with Sensor Based Data [71.84852429039881]
本稿では,手書きの数学的用語を自動分類する,スタビロによるUbiComp 2021チャレンジの解を提案する。
入力データセットには異なるライターのデータが含まれており、ラベル文字列は合計15の異なる文字から構成されている。
論文 参考訳(メタデータ) (2021-09-12T19:33:34Z) - Visualizing Classifier Adjacency Relations: A Case Study in Speaker
Verification and Voice Anti-Spoofing [72.4445825335561]
任意のバイナリ分類器によって生成される検出スコアから2次元表現を導出する簡単な方法を提案する。
ランク相関に基づいて,任意のスコアを用いた分類器の視覚的比較を容易にする。
提案手法は完全に汎用的であり,任意の検出タスクに適用可能だが,自動話者検証と音声アンチスプーフィングシステムによるスコアを用いた手法を実証する。
論文 参考訳(メタデータ) (2021-06-11T13:03:33Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Machine Learning Based on Natural Language Processing to Detect Cardiac
Failure in Clinical Narratives [0.2936007114555107]
この研究の目的は、患者が心不全または健康な状態を有するかどうかを自動的に検出する機械学習アルゴリズムを開発することである。
bag-of-word (BoW), term frequency inverse document frequency (TFIDF), and neural word embeddeddings (word2vec) を用いて単語表現学習を行った。
提案されたフレームワークは、ac、pre、rec、f1がそれぞれ84%、82%、85%、83%の全体的な分類性能を達成した。
論文 参考訳(メタデータ) (2021-04-08T17:28:43Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
睡眠障害は、世界中の主要な病気の1つです。
専門家が使用する基本的なツールはPolysomnogramで、睡眠中に記録された様々な信号の集合である。
専門家は、標準的なガイドラインの1つに従って異なる信号を採点する必要があります。
論文 参考訳(メタデータ) (2021-03-30T09:59:56Z) - Dermo-DOCTOR: A web application for detection and recognition of the
skin lesion using a deep convolutional neural network [3.7242808753092502]
本稿では,Dermo-DOCTORという皮膚病変の同時検出と認識のための,エンドツーエンドの深層CNNベースのマルチタスクWebアプリケーションを提案する。
検出サブネットワークでは、Fused Feature Map (FFM) がデコードに使われ、出力された病変マスクの入力解像度を得る。
認識サブネットワークでは、2つのエンコーダとFFMの特徴マップをアグリゲーションに使用して最終病変クラスを得る。
論文 参考訳(メタデータ) (2021-02-03T01:14:52Z) - pseudo-Bayesian Neural Networks for detecting Out of Distribution Inputs [12.429095025814345]
重みよりも分布を学習する代わりに、推定時に点推定と摂動重みを用いる擬似BNNを提案する。
全体として、この組み合わせは、推論時にOODサンプルを検出するという原則的な手法をもたらす。
論文 参考訳(メタデータ) (2021-02-02T06:23:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。