Finite-key analysis of loss-tolerant quantum key distribution based on
random sampling theory
- URL: http://arxiv.org/abs/2101.12603v2
- Date: Fri, 21 Oct 2022 00:34:15 GMT
- Title: Finite-key analysis of loss-tolerant quantum key distribution based on
random sampling theory
- Authors: Guillermo Curr\'as-Lorenzo, \'Alvaro Navarrete, Margarida Pereira,
Kiyoshi Tamaki
- Abstract summary: We propose an alternative security analysis of the LT protocol against general attacks.
Our security proof provides considerably higher secret-key rates than the previous finite-key analysis.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The core of security proofs of quantum key distribution (QKD) is the
estimation of a parameter that determines the amount of privacy amplification
that the users need to apply in order to distill a secret key. To estimate this
parameter using the observed data, one needs to apply concentration
inequalities, such as random sampling theory or Azuma's inequality. The latter
can be straightforwardly employed in a wider class of QKD protocols, including
those that do not rely on mutually unbiased encoding bases, such as the
loss-tolerant (LT) protocol. However, when applied to real-life finite-length
QKD experiments, Azuma's inequality typically results in substantially lower
secret-key rates. Here, we propose an alternative security analysis of the LT
protocol against general attacks, for both its prepare-and-measure and
measure-device-independent versions, that is based on random sampling theory.
Consequently, our security proof provides considerably higher secret-key rates
than the previous finite-key analysis based on Azuma's inequality. This work
opens up the possibility of using random sampling theory to provide alternative
security proofs for other QKD protocols.
Related papers
- Sharp Analysis for KL-Regularized Contextual Bandits and RLHF [52.519416266840814]
Reverse-Kullback-Leibler (KL) regularization has emerged to be a predominant technique used to enhance policy optimization in reinforcement learning.
We show that a simple two-stage mixed sampling strategy can achieve a sample complexity with only an additive dependence on the coverage coefficient.
Our results provide a comprehensive understanding of the roles of KL-regularization and data coverage in RLHF, shedding light on the design of more efficient RLHF algorithms.
arXiv Detail & Related papers (2024-11-07T11:22:46Z) - Sharp finite statistics for minimum data block sizes in quantum key distribution [0.0]
We introduce an alternative solution that exploits a link between random sampling with and without replacement.
Despite its simplicity, it notably boosts the achievable secret key rate.
Bounds of this kind naturally fit in finite-key security proofs of decoy-state QKD schemes.
arXiv Detail & Related papers (2024-10-05T09:30:55Z) - Prototype-based Aleatoric Uncertainty Quantification for Cross-modal
Retrieval [139.21955930418815]
Cross-modal Retrieval methods build similarity relations between vision and language modalities by jointly learning a common representation space.
However, the predictions are often unreliable due to the Aleatoric uncertainty, which is induced by low-quality data, e.g., corrupt images, fast-paced videos, and non-detailed texts.
We propose a novel Prototype-based Aleatoric Uncertainty Quantification (PAU) framework to provide trustworthy predictions by quantifying the uncertainty arisen from the inherent data ambiguity.
arXiv Detail & Related papers (2023-09-29T09:41:19Z) - Finite-Key Analysis for Coherent One-Way Quantum Key Distribution [18.15943439545963]
Coherent-one-way (COW) quantum key distribution (QKD) is a significant communication protocol that has been implemented experimentally and deployed in practical products.
Existing security analyses of COW-QKD either provide a short transmission distance or lack immunity against coherent attacks in the finite-key regime.
We present a tight finite-key framework for a variant of COW-QKD, which has been proven to extend the secure transmission distance in the case.
arXiv Detail & Related papers (2023-09-28T03:32:06Z) - Finite-key security analysis of differential-phase-shift quantum key
distribution [0.0]
Differential-phase-shift (DPS) quantum key distribution (QKD) is one of the major QKD protocols that can be implemented with a simple setup using a laser source and a passive detection unit.
An information-theoretic security proof of this protocol has been established in [npj Quant Inf. 5, 87] assuming the infinitely large number of emitted pulses.
We show that this obstacle can be overcome by exploiting recently found novel concentration inequality, Kato's inequality.
arXiv Detail & Related papers (2023-01-24T07:05:11Z) - Testing randomness of series generated in Bell's experiment [62.997667081978825]
We use a toy fiber optic based setup to generate binary series, and evaluate their level of randomness according to Ville principle.
Series are tested with a battery of standard statistical indicators, Hurst, Kolmogorov complexity, minimum entropy, Takensarity dimension of embedding, and Augmented Dickey Fuller and Kwiatkowski Phillips Schmidt Shin to check station exponent.
The level of randomness of series obtained by applying Toeplitz extractor to rejected series is found to be indistinguishable from the level of non-rejected raw ones.
arXiv Detail & Related papers (2022-08-31T17:39:29Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Geometry of Banach spaces: a new route towards Position Based
Cryptography [65.51757376525798]
We study Position Based Quantum Cryptography (PBQC) from the perspective of geometric functional analysis and its connections with quantum games.
The main question we are interested in asks for the optimal amount of entanglement that a coalition of attackers have to share in order to compromise the security of any PBQC protocol.
We show that the understanding of the type properties of some more involved Banach spaces would allow to drop out the assumptions and lead to unconditional lower bounds on the resources used to attack our protocol.
arXiv Detail & Related papers (2021-03-30T13:55:11Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Improved DIQKD protocols with finite-size analysis [2.940150296806761]
We show that positive randomness is achievable up to depolarizing noise values of $9.33%$, exceeding all previously known noise thresholds.
We also develop a modification to random-key-measurement protocols, using a pre-shared seed followed by a "seed recovery" step.
arXiv Detail & Related papers (2020-12-16T03:04:19Z) - Device-Independent Quantum Key Distribution with Random Key Basis [0.0]
Device-independent quantum key distribution (DIQKD) is the art of using untrusted devices to distribute secret keys in an insecure network.
We show that our protocol significantly improves over the original DIQKD protocol, enabling positive keys in the high noise regime for the first time.
arXiv Detail & Related papers (2020-05-06T09:57:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.