Sharp Analysis for KL-Regularized Contextual Bandits and RLHF
- URL: http://arxiv.org/abs/2411.04625v1
- Date: Thu, 07 Nov 2024 11:22:46 GMT
- Title: Sharp Analysis for KL-Regularized Contextual Bandits and RLHF
- Authors: Heyang Zhao, Chenlu Ye, Quanquan Gu, Tong Zhang,
- Abstract summary: Reverse-Kullback-Leibler (KL) regularization has emerged to be a predominant technique used to enhance policy optimization in reinforcement learning.
We show that a simple two-stage mixed sampling strategy can achieve a sample complexity with only an additive dependence on the coverage coefficient.
Our results provide a comprehensive understanding of the roles of KL-regularization and data coverage in RLHF, shedding light on the design of more efficient RLHF algorithms.
- Score: 52.519416266840814
- License:
- Abstract: Reverse-Kullback-Leibler (KL) regularization has emerged to be a predominant technique used to enhance policy optimization in reinforcement learning (RL) and reinforcement learning from human feedback (RLHF), which forces the learned policy to stay close to a reference policy. While the effectiveness and necessity of KL-regularization have been empirically demonstrated in various practical scenarios, current theoretical analysis of KL-regularized RLHF still obtains the same $\mathcal{O}(1 / \epsilon^2)$ sample complexity as problems without KL-regularization. To understand the fundamental distinction between policy learning objectives with KL-regularization and ones without KL-regularization, we are the first to theoretically demonstrate the power of KL-regularization by providing a sharp analysis for KL-regularized contextual bandits and RLHF, revealing an $\mathcal{O}(1 / \epsilon)$ sample complexity when $\epsilon$ is sufficiently small. We further explore the role of data coverage in contextual bandits and RLHF. While the coverage assumption is commonly employed in offline RLHF to link the samples from the reference policy to the optimal policy, often at the cost of a multiplicative dependence on the coverage coefficient, its impact on the sample complexity of online RLHF remains unclear. Previous theoretical analyses of online RLHF typically require explicit exploration and additional structural assumptions on the reward function class. In contrast, we show that with sufficient coverage from the reference policy, a simple two-stage mixed sampling strategy can achieve a sample complexity with only an additive dependence on the coverage coefficient. Our results provide a comprehensive understanding of the roles of KL-regularization and data coverage in RLHF, shedding light on the design of more efficient RLHF algorithms.
Related papers
- UNA: Unifying Alignments of RLHF/PPO, DPO and KTO by a Generalized Implicit Reward Function [14.7365465149829]
We propose textbfUNified textbfAlignment (UNA) which unifies RLHF/PPO, DPO and KTO.
With this novel mapping between a reward model and an optimal policy, UNA can 1.
outperform RLHF/PPO while simplify, stabilize, speed up and reduce memory burden of RL fine-tuning process.
arXiv Detail & Related papers (2024-08-27T18:04:07Z) - Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint [56.74058752955209]
This paper studies the alignment process of generative models with Reinforcement Learning from Human Feedback (RLHF)
We first identify the primary challenges of existing popular methods like offline PPO and offline DPO as lacking in strategical exploration of the environment.
We propose efficient algorithms with finite-sample theoretical guarantees.
arXiv Detail & Related papers (2023-12-18T18:58:42Z) - Leveraging Factored Action Spaces for Efficient Offline Reinforcement
Learning in Healthcare [38.42691031505782]
We propose a form of linear Q-function decomposition induced by factored action spaces.
Our approach can help an agent make more accurate inferences within underexplored regions of the state-action space.
arXiv Detail & Related papers (2023-05-02T19:13:10Z) - Offline Reinforcement Learning: Fundamental Barriers for Value Function
Approximation [74.3002974673248]
We consider the offline reinforcement learning problem, where the aim is to learn a decision making policy from logged data.
offline RL is becoming increasingly relevant in practice, because online data collection is well suited to safety-critical domains.
Our results show that sample-efficient offline reinforcement learning requires either restrictive coverage conditions or representation conditions that go beyond complexity learning.
arXiv Detail & Related papers (2021-11-21T23:22:37Z) - BRAC+: Improved Behavior Regularized Actor Critic for Offline
Reinforcement Learning [14.432131909590824]
Offline Reinforcement Learning aims to train effective policies using previously collected datasets.
Standard off-policy RL algorithms are prone to overestimations of the values of out-of-distribution (less explored) actions.
We improve the behavior regularized offline reinforcement learning and propose BRAC+.
arXiv Detail & Related papers (2021-10-02T23:55:49Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
Empirical risk minimization (ERM) is the workhorse of machine learning, but its model-agnostic guarantees can fail when we use adaptively collected data.
We study a generic importance sampling weighted ERM algorithm for using adaptively collected data to minimize the average of a loss function over a hypothesis class.
For policy learning, we provide rate-optimal regret guarantees that close an open gap in the existing literature whenever exploration decays to zero.
arXiv Detail & Related papers (2021-06-03T09:50:13Z) - Conservative Q-Learning for Offline Reinforcement Learning [106.05582605650932]
We show that CQL substantially outperforms existing offline RL methods, often learning policies that attain 2-5 times higher final return.
We theoretically show that CQL produces a lower bound on the value of the current policy and that it can be incorporated into a policy learning procedure with theoretical improvement guarantees.
arXiv Detail & Related papers (2020-06-08T17:53:42Z) - Leverage the Average: an Analysis of KL Regularization in RL [44.01222241795292]
We show that Kullback-Leibler (KL) regularization implicitly averages q-values.
We provide a very strong performance bound, the very first to combine two desirable aspects.
Some of our assumptions do not hold with neural networks, so we complement this theoretical analysis with an extensive empirical study.
arXiv Detail & Related papers (2020-03-31T10:55:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.