論文の概要: Does injecting linguistic structure into language models lead to better
alignment with brain recordings?
- arxiv url: http://arxiv.org/abs/2101.12608v1
- Date: Fri, 29 Jan 2021 14:42:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-01 12:59:30.674519
- Title: Does injecting linguistic structure into language models lead to better
alignment with brain recordings?
- Title(参考訳): 言語モデルに言語構造を注入することは、脳の記録との整合性を改善するか?
- Authors: Mostafa Abdou, Ana Valeria Gonzalez, Mariya Toneva, Daniel
Hershcovich, Anders S{\o}gaard
- Abstract要約: 言語モデルと脳記録との整合性は,構文的あるいは意味論的フォーマリズムからのアノテーションに偏りがある場合と評価する。
提案手法は,脳内の意味の組成について,より標的となる仮説の評価を可能にする。
- 参考スコア(独自算出の注目度): 13.880819301385854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neuroscientists evaluate deep neural networks for natural language processing
as possible candidate models for how language is processed in the brain. These
models are often trained without explicit linguistic supervision, but have been
shown to learn some linguistic structure in the absence of such supervision
(Manning et al., 2020), potentially questioning the relevance of symbolic
linguistic theories in modeling such cognitive processes (Warstadt and Bowman,
2020). We evaluate across two fMRI datasets whether language models align
better with brain recordings, if their attention is biased by annotations from
syntactic or semantic formalisms. Using structure from dependency or minimal
recursion semantic annotations, we find alignments improve significantly for
one of the datasets. For another dataset, we see more mixed results. We present
an extensive analysis of these results. Our proposed approach enables the
evaluation of more targeted hypotheses about the composition of meaning in the
brain, expanding the range of possible scientific inferences a neuroscientist
could make, and opens up new opportunities for cross-pollination between
computational neuroscience and linguistics.
- Abstract(参考訳): 神経科学者は、自然言語処理のためのディープニューラルネットワークを、脳内で言語がどのように処理されるかの候補モデルとして評価する。
これらのモデルは、しばしば明示的な言語的監督なしで訓練されるが、そのような監督なしで言語構造を学ぶことが示されており(manning et al., 2020)、そのような認知過程のモデリングにおける記号的言語理論の関連性に疑問を投げかける可能性がある(warstadt and bowman, 2020)。
2つのfMRIデータセットで、言語モデルが脳の記録とよく一致しているかどうかを評価します。
依存関係からの構造化や最小限の再帰セマンティックアノテーションを用いることで、データセットの1つに対してアライメントが大幅に改善される。
別のデータセットでは、より複雑な結果が得られます。
これらの結果を広範囲に分析する。
提案手法は,脳内の意味の組成に関するより標的的な仮説の評価を可能にし,神経科学者が行う可能性のある科学的推論の範囲を広げ,計算神経科学と言語学の交差する新たな機会を開放する。
関連論文リスト
- Analysis of Argument Structure Constructions in a Deep Recurrent Language Model [0.0]
本稿では,再帰型ニューラルネットワークモデルにおけるArgument Structure Constructions(ASC)の表現と処理について検討する。
その結果, 文表現は, 全層にまたがる4つのASCに対応する異なるクラスタを形成することがわかった。
これは、脳に拘束された比較的単純なリカレントニューラルネットワークでさえ、様々な構成タイプを効果的に区別できることを示している。
論文 参考訳(メタデータ) (2024-08-06T09:27:41Z) - Brain-Like Language Processing via a Shallow Untrained Multihead Attention Network [16.317199232071232]
大規模言語モデル(LLM)は、人間の言語システムの効果的なモデルであることが示されている。
本研究では、未学習モデルの驚くほどのアライメントを駆動する重要なアーキテクチャコンポーネントについて検討する。
論文 参考訳(メタデータ) (2024-06-21T12:54:03Z) - Language Generation from Brain Recordings [68.97414452707103]
本稿では,大言語モデルと意味脳デコーダの容量を利用した生成言語BCIを提案する。
提案モデルでは,視覚的・聴覚的言語刺激のセマンティック内容に整合したコヒーレントな言語系列を生成することができる。
本研究は,直接言語生成におけるBCIの活用の可能性と可能性を示すものである。
論文 参考訳(メタデータ) (2023-11-16T13:37:21Z) - Information-Restricted Neural Language Models Reveal Different Brain
Regions' Sensitivity to Semantics, Syntax and Context [87.31930367845125]
テキストコーパスを用いて語彙言語モデルGloveと超語彙言語モデルGPT-2を訓練した。
そして、これらの情報制限されたモデルが、自然主義的テキストを聴く人間のfMRI信号の時間軸を予測することができるかを評価した。
分析の結果、言語に関わるほとんどの脳領域は、構文変数と意味変数の両方に敏感であるが、これらの影響の相対的な大きさは、これらの領域で大きく異なることがわかった。
論文 参考訳(メタデータ) (2023-02-28T08:16:18Z) - Joint processing of linguistic properties in brains and language models [14.997785690790032]
人間の脳と言語モデルによる言語情報の詳細な処理の対応について検討する。
特定の言語特性の除去は脳のアライメントを著しく低下させる。
これらの知見は、脳と言語モデルとの整合における特定の言語情報の役割の明確な証拠である。
論文 参考訳(メタデータ) (2022-12-15T19:13:42Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
音声ブックを聴く被験者の機能的磁気共鳴イメージングの時間軸予測に及ぼすテスト損失,トレーニングコーパス,モデルアーキテクチャの影響について検討した。
各モデルの訓練されていないバージョンは、同じ単語をまたいだ脳反応の類似性を捉えることで、脳内のかなりの量のシグナルをすでに説明していることがわかりました。
ニューラル言語モデルを用いたヒューマン・ランゲージ・システムの説明を目的とした今後の研究の実践を提案する。
論文 参考訳(メタデータ) (2022-07-07T15:37:17Z) - Model-based analysis of brain activity reveals the hierarchy of language
in 305 subjects [82.81964713263483]
言語の神経基盤を分解する一般的なアプローチは、個人間で異なる刺激に対する脳の反応を関連付けている。
そこで本研究では,自然刺激に曝露された被験者に対して,モデルに基づくアプローチが等価な結果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-12T15:30:21Z) - Low-Dimensional Structure in the Space of Language Representations is
Reflected in Brain Responses [62.197912623223964]
言語モデルと翻訳モデルは,単語の埋め込み,構文的・意味的タスク,将来的な単語埋め込みとの間を円滑に介在する低次元構造を示す。
この表現埋め込みは、各特徴空間が、fMRIを用いて記録された自然言語刺激に対する人間の脳反応にどれだけうまく対応しているかを予測することができる。
これは、埋め込みが脳の自然言語表現構造の一部を捉えていることを示唆している。
論文 参考訳(メタデータ) (2021-06-09T22:59:12Z) - Analyzing Individual Neurons in Pre-trained Language Models [41.07850306314594]
言語的タスクを予測できるニューロンのサブセットは、より少ないニューロンに局所化される低いレベルタスクと、より高いレベルの構文予測タスクとがある。
例えば、XLNet のニューロンは、BERT などの特性を予測する際により局所化され、解離し、より分散され、結合される。
論文 参考訳(メタデータ) (2020-10-06T13:17:38Z) - Mechanisms for Handling Nested Dependencies in Neural-Network Language
Models and Humans [75.15855405318855]
我々は,「深層学習」手法で訓練された現代人工ニューラルネットワークが,人間の文処理の中心的な側面を模倣するかどうかを検討した。
ネットワークは、大きなコーパスで次の単語を予測するためにのみ訓練されたが、分析の結果、局所的および長距離の構文合意をうまく処理する特別なユニットが出現した。
我々は,複数の名詞の単数/複数状態における体系的な変化を伴う文中の数一致の違反を人間が検出する行動実験において,モデルの予測を検証した。
論文 参考訳(メタデータ) (2020-06-19T12:00:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。