論文の概要: Melon Playlist Dataset: a public dataset for audio-based playlist
generation and music tagging
- arxiv url: http://arxiv.org/abs/2102.00201v1
- Date: Sat, 30 Jan 2021 10:13:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-04 09:48:48.260996
- Title: Melon Playlist Dataset: a public dataset for audio-based playlist
generation and music tagging
- Title(参考訳): Melon Playlist Dataset:オーディオベースのプレイリスト生成と音楽タグ付けのための公開データセット
- Authors: Andres Ferraro, Yuntae Kim, Soohyeon Lee, Biho Kim, Namjun Jo, Semi
Lim, Suyon Lim, Jungtaek Jang, Sehwan Kim, Xavier Serra, Dmitry Bogdanov
- Abstract要約: 我々は649,091トラックと148,826の関連するプレイリストに対して,30,652の異なるタグで注釈付けされたメル-スペクトログラムの公開データセットを提示する。
データはすべて、人気の高い韓国のストリーミングサービスMelonから集められている。
このデータセットは、音楽情報検索タスク、特に自動タグ付けと自動プレイリスト継続に適している。
- 参考スコア(独自算出の注目度): 8.658926288789164
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: One of the main limitations in the field of audio signal processing is the
lack of large public datasets with audio representations and high-quality
annotations due to restrictions of copyrighted commercial music. We present
Melon Playlist Dataset, a public dataset of mel-spectrograms for 649,091tracks
and 148,826 associated playlists annotated by 30,652 different tags. All the
data is gathered from Melon, a popular Korean streaming service. The dataset is
suitable for music information retrieval tasks, in particular, auto-tagging and
automatic playlist continuation. Even though the latter can be addressed by
collaborative filtering approaches, audio provides opportunities for research
on track suggestions and building systems resistant to the cold-start problem,
for which we provide a baseline. Moreover, the playlists and the annotations
included in the Melon Playlist Dataset make it suitable for metric learning and
representation learning.
- Abstract(参考訳): オーディオ信号処理の分野での主な制限の1つは、著作権のある商業音楽の制限のために、オーディオ表現と高品質のアノテーションを備えた大規模な公開データセットがないことです。
Melon Playlist Datasetは649,091tracksのmel-spectrogramsの公開データセットであり、30,652の異なるタグでアノテートされた148,826の関連プレイリストである。
データはすべて、人気の高い韓国のストリーミングサービスMelonから集められている。
このデータセットは、音楽情報検索タスク、特に自動タグ付けおよび自動プレイリスト継続に適している。
後者は協調的なフィルタリング手法によって対処できるが、音声はトラックの提案やコールドスタート問題に耐性のある構築システムについて研究する機会を与え、ベースラインを提供する。
さらに、Melon Playlist Datasetに含まれるプレイリストとアノテーションは、メトリック学習と表現学習に適しています。
関連論文リスト
- LARP: Language Audio Relational Pre-training for Cold-Start Playlist Continuation [49.89372182441713]
マルチモーダルコールドスタートプレイリスト継続モデルであるLARPを導入する。
我々のフレームワークはタスク固有の抽象化の段階を増大させており、イントラトラック(音声)コントラスト損失、トラックトラックコントラスト損失、トラックプレイリストコントラスト損失である。
論文 参考訳(メタデータ) (2024-06-20T14:02:15Z) - MOSA: Music Motion with Semantic Annotation Dataset for Cross-Modal Music Processing [3.3162176082220975]
高品質な3次元モーションキャプチャーデータ、アライメント音声記録、ピッチ、ビート、フレーズ、動的、調音、ハーモニーを含むMOSA(Music mOtion with Semantic )データセットを23人のプロミュージシャンによる742のプロ音楽演奏に対して提示する。
私たちの知る限り、これはこれまでのノートレベルのアノテーションを備えた、最大のクロスモーダルな音楽データセットです。
論文 参考訳(メタデータ) (2024-06-10T15:37:46Z) - MuPT: A Generative Symbolic Music Pretrained Transformer [56.09299510129221]
音楽の事前学習におけるLarge Language Models (LLM) の適用について検討する。
生成過程の異なるトラックからの不整合対策に関連する課題に対処するために,SMT-ABC Notation(Synchronized Multi-Track ABC Notation)を提案する。
私たちのコントリビューションには、最大8192個のトークンを処理可能な一連のモデルが含まれており、トレーニングセットの象徴的な音楽データの90%をカバーしています。
論文 参考訳(メタデータ) (2024-04-09T15:35:52Z) - MusiLingo: Bridging Music and Text with Pre-trained Language Models for Music Captioning and Query Response [42.73982391253872]
MusiLingoは音楽キャプション生成と音楽関連クエリ応答のための新しいシステムである。
広範囲な音楽キャプションデータセットでトレーニングし、インストラクショナルデータで微調整する。
音楽キャプションの生成と音楽関連Q&Aペアの構成において,その競争性能を実証した。
論文 参考訳(メタデータ) (2023-09-15T19:31:40Z) - MARBLE: Music Audio Representation Benchmark for Universal Evaluation [79.25065218663458]
我々は,UniversaL Evaluation(MARBLE)のための音楽音響表現ベンチマークを紹介する。
音響、パフォーマンス、スコア、ハイレベルな記述を含む4つの階層レベルを持つ包括的分類を定義することで、様々な音楽情報検索(MIR)タスクのベンチマークを提供することを目的としている。
次に、8つの公開データセット上の14のタスクに基づいて統一されたプロトコルを構築し、ベースラインとして音楽録音で開発されたすべてのオープンソース事前学習モデルの表現を公平かつ標準的に評価する。
論文 参考訳(メタデータ) (2023-06-18T12:56:46Z) - GETMusic: Generating Any Music Tracks with a Unified Representation and
Diffusion Framework [58.64512825534638]
シンボリック・ミュージック・ジェネレーションは、ユーザーが音楽を作るのに役立つ音符を作成することを目的としている。
私たちは「GETMusic」と呼ばれるフレームワークを紹介します。「GET'」は「GEnerate Music Tracks」の略です。
GETScoreは、音符をトークンとして表現し、2D構造でトークンを整理する。
提案する表現は,非自己回帰生成モデルと組み合わせて,任意のソース・ターゲットトラックの組み合わせでGETMusicに音楽を生成する。
論文 参考訳(メタデータ) (2023-05-18T09:53:23Z) - Music Playlist Title Generation Using Artist Information [4.201869316472344]
本稿では,一連の楽曲からプレイリストのタイトルを生成するエンコーダ・デコーダモデルを提案する。
トラックIDとアーティストIDを入力シーケンスとして比較した結果, 単語重複, 意味的関連性, 多様性の観点から, アーティストベースアプローチが性能を著しく向上させることが明らかとなった。
論文 参考訳(メタデータ) (2023-01-14T00:19:39Z) - Melody transcription via generative pre-training [86.08508957229348]
メロディの書き起こしの鍵となる課題は、様々な楽器のアンサンブルや音楽スタイルを含む幅広いオーディオを処理できる方法を構築することである。
この課題に対処するために、広帯域オーディオの生成モデルであるJukebox(Dhariwal et al. 2020)の表現を活用する。
広義音楽のクラウドソースアノテーションから50ドル(約5,400円)のメロディ書き起こしを含む新しいデータセットを導出する。
論文 参考訳(メタデータ) (2022-12-04T18:09:23Z) - A Dataset for Greek Traditional and Folk Music: Lyra [69.07390994897443]
本稿では,80時間程度で要約された1570曲を含むギリシャの伝統音楽と民俗音楽のデータセットについて述べる。
このデータセットにはYouTubeのタイムスタンプ付きリンクが組み込まれており、オーディオやビデオの検索や、インスツルメンテーション、地理、ジャンルに関する豊富なメタデータ情報が含まれている。
論文 参考訳(メタデータ) (2022-11-21T14:15:43Z) - Unaligned Supervision For Automatic Music Transcription in The Wild [1.2183405753834562]
NoteEMは、トランクレーバーを同時に訓練し、スコアを対応するパフォーマンスに合わせる方法である。
我々は、MAPSデータセットのSOTAノートレベル精度と、データセット間の評価において好適なマージンを報告した。
論文 参考訳(メタデータ) (2022-04-28T17:31:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。