論文の概要: Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting
- arxiv url: http://arxiv.org/abs/2102.00397v1
- Date: Sun, 31 Jan 2021 06:49:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-02 23:09:14.894304
- Title: Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting
- Title(参考訳): 確率時系列予測のための学習解釈可能な深部状態空間モデル
- Authors: Longyuan Li, Junchi Yan, Xiaokang Yang, and Yaohui Jin
- Abstract要約: 確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
- 参考スコア(独自算出の注目度): 98.57851612518758
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Probabilistic time series forecasting involves estimating the distribution of
future based on its history, which is essential for risk management in
downstream decision-making. We propose a deep state space model for
probabilistic time series forecasting whereby the non-linear emission model and
transition model are parameterized by networks and the dependency is modeled by
recurrent neural nets. We take the automatic relevance determination (ARD) view
and devise a network to exploit the exogenous variables in addition to time
series. In particular, our ARD network can incorporate the uncertainty of the
exogenous variables and eventually helps identify useful exogenous variables
and suppress those irrelevant for forecasting. The distribution of multi-step
ahead forecasts are approximated by Monte Carlo simulation. We show in
experiments that our model produces accurate and sharp probabilistic forecasts.
The estimated uncertainty of our forecasting also realistically increases over
time, in a spontaneous manner.
- Abstract(参考訳): 確率的時系列予測は、下流意思決定におけるリスク管理に不可欠な、その歴史に基づく未来分布の推定を伴う。
非線形放出モデルと遷移モデルがネットワークによってパラメータ化され、依存性が繰り返しニューラルネットによってモデル化される確率時系列予測のための深部状態空間モデルを提案する。
我々は,自動関係決定(ARD)の視点を取り入れ,時系列に加えて外因性変数を利用するネットワークを考案する。
特に,我々のARDネットワークは,外因性変数の不確実性を組み込んで,有用な外因性変数の同定と予測に無関係な変数の抑制に役立てることができる。
マルチステップ予測の分布はモンテカルロシミュレーションによって近似される。
実験では,モデルが正確かつ鋭い確率予測を生成することを示す。
予測の不確実性の推定は、時間とともに、自然に、現実的に増加する。
関連論文リスト
- Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2022-06-16T06:13:53Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - Probabilistic Forecasting with Generative Networks via Scoring Rule
Minimization [5.5643498845134545]
生成ニューラルネットワークを用いて高次元空間上の分布をパラメトリズする。
生成ネットワークをトレーニングし、関心の現象の時間的シーケンスの記録に基づいて、予測順序(または前順序)のスコアリングルールを最小化する。
本手法は,特に確率的キャリブレーションにおいて,最先端の対角法よりも優れている。
論文 参考訳(メタデータ) (2021-12-15T15:51:12Z) - Probabilistic Time Series Forecasting with Implicit Quantile Networks [0.7249731529275341]
自己回帰的リカレントニューラルネットワークとインプリシット量子ネットワークを併用して、時系列ターゲット上の大規模な分布を学習する。
提案手法は, 時間分布の推定だけでなく, ポイントワイズ予測精度の観点からも好適である。
論文 参考訳(メタデータ) (2021-07-08T10:37:24Z) - RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting [30.277213545837924]
古典的な統計モデルの多くは、時系列データに存在する複雑さと高い非線形性を扱うのに不足することが多い。
本研究では,時系列データを非線形状態空間モデルからのランダムな実現とみなす。
粒子流は, 複雑で高次元的な設定において極めて有効であることを示すため, 状態の後方分布を近似するツールとして用いられる。
論文 参考訳(メタデータ) (2021-06-10T21:49:23Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
既存の予測モデルは不確実な定量化を無視し、誤校正予測をもたらす。
不確実性を考慮した時系列予測のためのディープニューラルネットワークの最近の研究にもいくつかの制限がある。
本稿では,予測タスクを確率的生成過程としてモデル化し,EPIFNPと呼ばれる機能的ニューラルプロセスモデルを提案する。
論文 参考訳(メタデータ) (2021-06-07T18:31:47Z) - Deep Distributional Time Series Models and the Probabilistic Forecasting
of Intraday Electricity Prices [0.0]
本稿では,深部時系列確率モデルを構築するための2つのアプローチを提案する。
1つ目は、ESNの出力層が、追加の正規化の前に乱れと縮小がある点である。
第二のアプローチは、特徴空間上の深いコプラ過程であるガウス乱れを伴うESNの暗黙のコプラを用いる。
論文 参考訳(メタデータ) (2020-10-05T08:02:29Z) - Adversarial Attacks on Probabilistic Autoregressive Forecasting Models [7.305979446312823]
我々は、単一値の列ではなく確率分布の列を出力するニューラルネットワークに対する効果的な逆攻撃を生成する。
提案手法は,2つの課題において,入力摂動の少ない攻撃を効果的に生成できることを実証する。
論文 参考訳(メタデータ) (2020-03-08T13:08:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。