Decoupling the Role of Data, Attention, and Losses in Multimodal
Transformers
- URL: http://arxiv.org/abs/2102.00529v1
- Date: Sun, 31 Jan 2021 20:36:41 GMT
- Title: Decoupling the Role of Data, Attention, and Losses in Multimodal
Transformers
- Authors: Lisa Anne Hendricks, John Mellor, Rosalia Schneider, Jean-Baptiste
Alayrac, Aida Nematzadeh
- Abstract summary: We study three important factors which can impact the quality of learned representations: pretraining data, the attention mechanism, and loss functions.
By pretraining models on six datasets, we observe that dataset noise and language similarity to our downstream task are important indicators of model performance.
We show that successful contrastive losses used in the self-supervised learning literature do not yield similar performance gains when used in multimodal transformers.
- Score: 20.343814813409537
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently multimodal transformer models have gained popularity because their
performance on language and vision tasks suggest they learn rich
visual-linguistic representations. Focusing on zero-shot image retrieval tasks,
we study three important factors which can impact the quality of learned
representations: pretraining data, the attention mechanism, and loss functions.
By pretraining models on six datasets, we observe that dataset noise and
language similarity to our downstream task are important indicators of model
performance. Through architectural analysis, we learn that models with a
multimodal attention mechanism can outperform deeper models with modality
specific attention mechanisms. Finally, we show that successful contrastive
losses used in the self-supervised learning literature do not yield similar
performance gains when used in multimodal transformers
Related papers
- Investigating Self-Supervised Methods for Label-Efficient Learning [27.029542823306866]
We study different self supervised pretext tasks, namely contrastive learning, clustering, and masked image modelling for their low-shot capabilities.
We introduce a framework involving both mask image modelling and clustering as pretext tasks, which performs better across all low-shot downstream tasks.
When testing the model on full scale datasets, we show performance gains in multi-class classification, multi-label classification and semantic segmentation.
arXiv Detail & Related papers (2024-06-25T10:56:03Z) - Towards In-Vehicle Multi-Task Facial Attribute Recognition:
Investigating Synthetic Data and Vision Foundation Models [8.54530542456452]
We investigate the utility of synthetic datasets for training complex multi-task models that recognize facial attributes of passengers of a vehicle.
Our study unveils counter-intuitive findings, notably the superior performance of ResNet over ViTs in our specific multi-task context.
arXiv Detail & Related papers (2024-03-10T04:17:54Z) - CogCoM: Train Large Vision-Language Models Diving into Details through Chain of Manipulations [61.21923643289266]
Chain of Manipulations is a mechanism that enables Vision-Language Models to solve problems step-by-step with evidence.
After training, models can solve various visual problems by eliciting intrinsic manipulations (e.g., grounding, zoom in) actively without involving external tools.
Our trained model, textbfCogCoM, achieves state-of-the-art performance across 9 benchmarks from 4 categories.
arXiv Detail & Related papers (2024-02-06T18:43:48Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
This paper presents UniDiff, a unified multi-modal model that integrates image-text contrastive learning (ITC), text-conditioned image synthesis learning (IS), and reciprocal semantic consistency modeling (RSC)
UniDiff demonstrates versatility in both multi-modal understanding and generative tasks.
arXiv Detail & Related papers (2023-06-01T15:39:38Z) - Task Formulation Matters When Learning Continually: A Case Study in
Visual Question Answering [58.82325933356066]
Continual learning aims to train a model incrementally on a sequence of tasks without forgetting previous knowledge.
We present a detailed study of how different settings affect performance for Visual Question Answering.
arXiv Detail & Related papers (2022-09-30T19:12:58Z) - Multi-dataset Training of Transformers for Robust Action Recognition [75.5695991766902]
We study the task of robust feature representations, aiming to generalize well on multiple datasets for action recognition.
Here, we propose a novel multi-dataset training paradigm, MultiTrain, with the design of two new loss terms, namely informative loss and projection loss.
We verify the effectiveness of our method on five challenging datasets, Kinetics-400, Kinetics-700, Moments-in-Time, Activitynet and Something-something-v2.
arXiv Detail & Related papers (2022-09-26T01:30:43Z) - Self-Supervised Models are Continual Learners [79.70541692930108]
We show that self-supervised loss functions can be seamlessly converted into distillation mechanisms for Continual Learning.
We devise a framework for Continual self-supervised visual representation Learning that significantly improves the quality of the learned representations.
arXiv Detail & Related papers (2021-12-08T10:39:13Z) - Behind the Scene: Revealing the Secrets of Pre-trained
Vision-and-Language Models [65.19308052012858]
Recent Transformer-based large-scale pre-trained models have revolutionized vision-and-language (V+L) research.
We present VALUE, a set of meticulously designed probing tasks to decipher the inner workings of multimodal pre-training.
Key observations: Pre-trained models exhibit a propensity for attending over text rather than images during inference.
arXiv Detail & Related papers (2020-05-15T01:06:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.